Mostrando postagens com marcador Segurança. Mostrar todas as postagens
Mostrando postagens com marcador Segurança. Mostrar todas as postagens

quinta-feira, 18 de abril de 2024

Tipos de gelo e seu efeitos nas aeronaves


Um dos maiores riscos de voar em climas frios é a formação de gelo de aeronaves. Congelamento de aeronaves refere-se ao revestimento ou depósito de gelo em qualquer objeto da aeronave, causado pelo congelamento e impacto de hidrômetros líquidos. Isso pode ter um efeito prejudicial na aeronave e dificultar a pilotagem do avião.

Os fatores significativos que afetam a ameaça de congelamento da aeronave incluem temperaturas ambientais, velocidade da aeronave, temperatura da superfície da aeronave, o formato da superfície da aeronave, concentração de partículas e tamanho das partículas.

A taxa de captura é afetada pelo tamanho das gotas. Pequenas gotas seguem o fluxo de ar e se formam ao redor da asa, enquanto gotas grandes e pesadas atingem a asa de uma aeronave.


Quando uma pequena gota atinge, ela só se espalhará de volta sobre a asa da aeronave uma pequena distância, enquanto a grande gota se espalhará mais longe. À medida que a velocidade no ar de um avião aumenta, o número de gotas que atingem a aeronave também aumenta.

A taxa de captura de gelo da aeronave também é afetada pela curvatura da borda de ataque da asa. As asas grossas tendem a capturar menos gotas do que as asas finas. É por isso que uma aeronave com asas finas que voa em alta velocidade através de grandes gotas tem a maior taxa de captura de gelo de aeronave.

Como uma aeronave é afetada pelo gelo


O gelo pode se acumular na superfície do avião e prejudicar o funcionamento das asas, hélices e superfície de controle, bem como dos velames e para-brisas, tubos pitot, respiradouros estáticos, entradas de ar, carburadores e antenas de rádio .

Os motores de turbina do plano são extremamente vulneráveis. O gelo que se forma na carenagem da admissão pode restringir a admissão de ar. Quando o gelo se forma nas lâminas de partida e no rotor, ele degrada sua eficiência e desempenho e pode até mesmo causar o incêndio. Quando pedaços de gelo se partem, o motor pode sugá-los. Isso pode causar danos estruturais.

Na superfície de uma aeronave com pequenas bordas de ataque - como antenas, estabilizadores horizontais, hélices, amortecedores do trem de pouso e leme - são os primeiros a acumular gelo.

Efeitos adversos ao brilho causado pelo glacê
O primeiro local de uma aeronave onde o gelo geralmente se forma primeiro é o fino medidor de temperatura do ar externo. O gelo geralmente assume as asas no final. Ocasionalmente, uma fina camada de gelo pode se formar no para-brisa da aeronave. Isso pode ocorrer na aterrissagem e na decolagem.

Quando o gelo se forma na hélice, o piloto pode notar uma perda de potência e aspereza do motor. O gelo se forma primeiro na cúpula da hélice ou girador. Em seguida, ele segue seu caminho até as lâminas.

O gelo pode se acumular de maneira desigual nas lâminas e, como resultado, elas podem ficar desequilibradas. Isso resultará em vibrações que colocarão pressão indevida nas lâminas, bem como nos suportes do motor, o que pode causar sua falha.

Se a hélice do motor está acumulando gelo, a mesma coisa estará acontecendo nas superfícies da cauda, ​​asas e outras projeções. O peso do gelo acumulado não é tão sério quanto a interrupção do fluxo de ar que causa ao redor da superfície da cauda e das asas.

Descongelando um De Havilland DHC-3
O gelo acumulado destrói a sustentação e altera a seção transversal do aerofólio. Também aumenta o arrasto e a velocidade de estol. Por outro lado, o empuxo da aeronave se degrada por causa do gelo que se acumula nas pás da hélice.

Nesse cenário, o piloto é forçado a usar um ângulo de ataque alto e potência total para manter a altitude. Quando o ângulo de ataque é alto, o gelo começa a se formar na parte inferior da asa, adicionando mais resistência e peso.

Sob condições de gelo, as abordagens de pouso, bem como a aterrissagem, podem ser perigosas. Ao pousar uma aeronave congelada, os pilotos devem usar mais velocidade e potência do que o normal.

Os instrumentos de voo podem não operar se o gelo se acumular nas portas de pressão estática do avião e no tubo piloto. A taxa de subida, a velocidade do ar e o altímetro podem ser afetados. Os instrumentos de giroscópio dentro da aeronave que são movidos por um empreendimento também podem ser afetados quando o gelo se acumula na garganta do venturi.

Gelo no casco da aeronave

Tipos de gelo de aeronave


Geralmente reconhecemos 4 tipos principais de formação de gelo em aeronaves. Gelo gélido, gelo claro, gelo misto e geada. Continue lendo para saber mais sobre cada um desses tipos de gelo.

1. Gelo Glaceado (Rime Ice)



Um gelo opaco ou branco leitoso que se deposita na superfície da aeronave quando ela está voando através de nuvens transparentes é classificado como gelo de geada. Geralmente é formado por causa de pequenas gotículas super-resfriadas quando a taxa de captura é baixa.

Gelo de geada (glaceado) se acumula nas bordas de ataque das asas e nas cabeças dos pilotos, antenas, etc. Para que o gelo de geada se forme na aeronave, a temperatura do revestimento da aeronave deve estar abaixo de 0° C. Devido à baixa temperatura, as gotas congelam rápida e completamente. Mesmo após o congelamento, as gotas não perdem sua forma esférica.

Efeitos de gelo glaciado
Os depósitos de gelo cremoso não têm muito peso, mas ainda assim é perigoso porque altera a aerodinâmica da curvatura da asa e afeta os instrumentos. Normalmente, o gelo do gelo é quebradiço e pode ser desalojado facilmente com fluido e equipamento de descongelamento . Ocasionalmente, gelo claro (discutido abaixo) e gelo geado se formarão simultaneamente.

2. Gelo transparente



A espessa camada de gelo que se forma quando uma aeronave voa através de nuvens que contêm grandes quantidades de grandes gotas super-resfriadas é chamada de gelo glaceado ou gelo transparente.

O gelo transparente geralmente se espalha de forma desigual sobre as superfícies da cauda, ​​antenas, pás da hélice e asas. Ela se forma quando uma pequena parte da gota congela ao entrar em contato com a superfície de uma aeronave.

A temperatura da aeronave sobe para 0° C quando o calor é liberado durante o impacto inicial da gota. Isso permite que uma grande parte das gotas de água se espalhe e se misture com outras gotas antes de congelar. Assim, uma camada firme de gelo se forma na aeronave sem qualquer ar embutido.

À medida que mais gelo transparente se acumula na aeronave, ele começa a se formar em forma de chifre, projetando-se à frente da superfície da cauda, ​​asa, antena e outras estruturas.


O fluxo de ar é severamente interrompido por esta formação única de gelo e aumenta o arrasto no vôo em cerca de 300 a 500 por cento. O gelo claro é extremamente perigoso porque faz com que a aeronave perca sustentação, pois altera a curvatura da asa e interrompe o fluxo de ar sobre a superfície da cauda e as asas da aeronave. Além disso, aumenta o arrasto, o que é perigoso para o avião.

As vibrações decorrentes do carregamento desigual nas pás e asas da hélice também são perigosas para o voo. Quando grandes blocos de gelo transparente se quebram, as vibrações podem se tornar tão fortes que podem prejudicar a estrutura da aeronave. Quando o gelo transparente se mistura com granizo ou neve, pode parecer esbranquiçado.

3. Gelo misturado



Como o nome sugere, gelo misturado é o tipo de gelo que carrega as propriedades de gelo de gelo e gelo transparente. Ele se forma quando pequenas e grandes gotas super-resfriadas estão presentes.

O aspecto do gelo misto é irregular, áspero e esbranquiçado. As condições favoráveis ​​para a formação desse tipo de gelo de aeronave incluem partículas congeladas e líquidas presentes nos flocos de neve úmidos e na porção mais fria da nuvem cumuliforme.


O processo de formação desse tipo de gelo para aeronaves inclui o gelo do gelo e do gelo transparente. O gelo misturado pode se acumular rapidamente e não é facilmente removido.

4. Frost



O gelo semicristalino pode se formar no ar puro por meio de deposição. Isso não tem um grande efeito no vôo, mas pode obscurecer a visão do piloto revestindo o para-brisa da aeronave.

Ele também pode interferir com os sinais de rádio formando-se na antena. A geada geralmente se forma no ar limpo quando uma aeronave fria entra no ar mais úmido e quente.

As aeronaves que ficam estacionadas do lado de fora nas noites frias podem ficar cobertas por esse tipo de gelo pela manhã. A geada se forma quando a superfície superior da aeronave esfria abaixo da temperatura do ar circundante.

O gelo que se forma nas superfícies de controle, cauda e asas deve ser removido antes da decolagem; pode alterar as características aerodinâmicas da asa o suficiente para interferir na decolagem, reduzindo a sustentação e aumentando a velocidade de estol.

O orvalho congelado também pode se formar na aeronave que está estacionada do lado de fora em uma noite fria, quando as temperaturas estão abaixo de 0° C. Esse orvalho é geralmente cristalino e claro, enquanto a geada é branca e fina.

Assim como a geada, o orvalho congelado também deve ser removido adequadamente antes da decolagem. Na verdade, é imperativo remover qualquer tipo de umidade antes da decolagem, pois ela pode congelar enquanto o avião está taxando.

quarta-feira, 17 de abril de 2024

Como funcionam os radares que detectam aviões


Origem e funcionamento 


Radar é, na verdade, a sigla para Radio Detecting And Ranging (Detecção e determinação de distância por rádio, em inglês). Ele foi inventado em 1904 pelo alemão Christian Hülsmeyer, mas só começou a ser usado em 1935, em um navio. Sua função era de detectar possíveis obstáculos. 

O sistema passou a ter uso militar durante a Segunda Guerra Mundial, em 1939, para a detecção de aeronaves —em especial pelos ingleses, que utilizavam a tecnologia para avisar com antecedência a população em caso de bombardeios nazistas.

Os radares são, de forma resumida, antenas emissoras e receptoras que funcionam ao emitir ondas eletromagnéticas de super alta frequência (SHF) em uma determinada direção. Caso essas ondas encontrem um objeto — um avião, por exemplo —, o sistema é capaz de ler e interpretar o padrão de reflexo dessas ondas e determinar variáveis como tamanho do objeto, velocidade e mudanças de altitude. 

Isso ocorre pelo chamado Efeito Doppler, a defasagem de frequência entre o sinal emitido e o recebido de volta.

Esse é o conceito básico dos radares, mas, dependendo da aplicação, a antena pode ser giratória, para cobrir 360 graus, ou fixa. Em alguns casos, há uma combinação desses dois sistemas. 

Os radares militares para controle aéreo têm funções específicas, como rastreamento, cálculo de trajetória e ainda para auxiliar na mira para disparo de armas guiadas por radar.

Além da finalidade militar, os radares têm sido utilizados em outras situações, como o controle de velocidade dos carros em uma rodovia e até como ferramenta para análise meteorológica. 

Os radares podem ser fixos ou portáteis e serem carregados, por exemplo, por aviões. Vale salientar que, caso um avião militar esteja com o radar ativo, ele se torna, automaticamente, um alvo mais fácil de ser localizado por outros radares, presentes tanto em terra quanto instalados em veículos e aeronaves.

Dúvidas comuns


Como um radar é capaz de identificar se um avião é aliado ou inimigo?

A identificação de aeronaves se dá, principalmente, pelos protocolos de detecção e comunicação. O alvo recebe o sinal, decodifica e responde de forma também codificada, identificando-se. Se não rolar essa "conversa", a aeronave pode ser considerada hostil. 

Sendo assim, o mesmo modelo de aeronave pode ter protocolos de detecção e identificação distintos, o que faria um Su-27 ucraniano, por exemplo, ser identificado como tal, não com uma aeronave russa.

No caso da aviação civil, há ainda um equipamento chamado transponder, que calcula sua posição por meio de GPS e a transmite para outras aeronaves e sistemas de monitoramento do trafego aéreo. Com isso, é possível saber onde cada aeronave está e, assim, traçar planos de voo e evitar situações de risco que possam culminar em colisões.

Qual é o alcance de um radar?


Radares de boa qualidade são capazes de detectar objetos a centenas de quilômetros. Há, porém, algumas limitações.

Considerando o método de funcionamento de um radar, que precisa que as ondas emitidas alcancem um objeto e retornem com uma clareza mínima, sem que ruídos eletromagnéticos causem detecções falsas, a curvatura da Terra pode atrapalhar. Especialmente se o objeto a ser detectado esteja próximo ao chão, como um avião voando em altitude baixa.

Nesse caso, essa aeronave só seria detectada quando estivesse muito próxima da origem do sinal de radar do solo.

Uma solução usada por forças aéreas é ter aviões — que podem, inclusive, ser jatos comerciais — transformados em "radares aéreos". Com isso, elimina-se essa limitação dos equipamentos instalados no solo.

O que são aviões "invisíveis"?


O F-117 em ação: primeiro caça stealth teria participado de ataque na Síria em 2017 (Foto: USAF)
Durante os anos 1970, a força aérea norte-americana começou a desenvolver um avião capaz de ser quase indetectável por radares — o que popularmente ficou conhecido por "avião invisível". Tratava-se do F-117, que ganhou notoriedade durante a Guerra do Golfo, em 1991.

Para diminuir ao máximo a sua detecção e identificação em radares, o avião usa uma combinação de superfícies geométricas planas, capazes de refletir as ondas de radar em poucas direções, dificultando o trabalho dos radares. 

Além disso, a fuselagem é coberta por materiais capazes de absorver, e não refletir, as ondas eletromagnéticas. Esse combo de tecnologias é complementado por sistemas ativos que geram interferência eletromagnética e, assim, "embaralham" o sinal emitido por radares inimigos.

É importante notar que esses aviões não são completamente invisíveis aos radares, apenas têm uma assinatura muito pequena. Assim, em determinadas condições, essas aeronaves podem ser detectadas.

Via Rodrigo Lara (Tilt/UOL) - Fonte: Renato Giacomini, coordenador e professor do departamento de engenharia elétrica do Centro Universitário FEI

terça-feira, 16 de abril de 2024

Análise: Acidente com o voo 801 da Korean Air Perspectiva da tripulação de cabine

A análise de um acidente angustiante com poucos sobreviventes.

(Foto: Michel Guilliand via Wikimedia Commons)
O voo 801 da Korean Air deixou o Aeroporto Internacional Kimpo em Seul, Coréia, em 5 de agosto de 1997. Ele estava indo para o Aeroporto Antonio B. Won Pat em Agana, Guam. O voo costumava ser feito em uma aeronave Airbus A300, mas hoje foi diferente. Foi um voo movimentado, com muitas famílias coreanas visitando Guam nas férias. O Boeing 747-300 tinha 237 passageiros a bordo, incluindo seis comissários de bordo da Korean Air fora de serviço.

A tripulação

O capitão Park Yong-chul era um piloto experiente que recentemente recebeu um prêmio de segurança de vôo por lidar com uma falha de motor do B747 em baixa altitude. O primeiro oficial era Song Kyung-ho, e o engenheiro de voo era Nam Suk-hoon. Havia 14 comissários de bordo, incluindo Oh Sang-hee e Lee Yang-ho. A tripulação chegou ao quartel-general duas horas antes do horário de partida, às 21h05. O Comandante estava inicialmente programado para voar para Dubai, nos Emirados Árabes Unidos, mas não teve descanso adequado para a viagem. Ele foi transferido para voar na rota de Guam, pois era mais curta.

O voo

Os comissários de bordo trabalhavam entre os conveses principal e superior nas cabines de primeira classe, prestígio e econômica. O voo foi completamente tranquilo até sair de Guam. Houve forte turbulência e alguns dos passageiros estavam ficando nervosos. Os comissários garantiram a segurança da cabine e tentaram tranquilizar os ansiosos. Eles se prepararam para o pouso como de costume e pegaram seus assentos auxiliares.

Na cabine de comando

Durante o voo, o Comandante referiu sentir-se cansado e sonolento. Ele estava insatisfeito com a programação e teve problemas para descansar o suficiente. Chovia forte fora de Guam e ele queria fazer um pouso por instrumentos, embora não tenha informado totalmente a tripulação sobre a aproximação por instrumentos. Ele pensou que o sistema de pouso por instrumentos (ILS) estava funcionando por causa de um sinal falso, mas o ILS estava fora de serviço no aeroporto. A tripulação de voo viu o avistamento inicial de Guam após sair de fortes chuvas. A aeronave continuou a descer abruptamente e a tripulação não conseguiu ver o aeroporto por causa de uma segunda chuva entre Nimitz Hill e o aeroporto. Embora o engenheiro de voo tenha dito que o sinal do ILS estava incorreto, o Comandante continuou a descida.

Destroços do voo 801 da Korean Airlines (Foto: Rex B. Cordell/Marinha dos EUA)
Impensável

O Boeing 747-300 atingiu Nimitz Hill, Guam, às 01h42 do dia 6 de agosto, a apenas três milhas e meia da pista. Um dos comissários de bordo da primeira classe, sentado na porta um do lado direito, ouviu um som alto de 'boom' e a aeronave balançou violentamente. O comissário de bordo Oh Sang-hee também sentiu a aeronave tremendo e achou incomum. Ela olhou para fora para ver as chamas. Os assentos da aeronave começaram a amassar e a bagagem caiu dos armários superiores sobre os passageiros. De repente, houve calor intenso e chamas, e uma bola de fogo varreu a cabine. A aeronave rolou e se desintegrou, dividindo-se em cinco seções. Em meio à completa escuridão da noite e ao cheiro de combustível de aviação, inúmeras explosões aconteceram.

Consequências

Alguns passageiros foram ejetados da aeronave. A comissária de bordo na porta à direita e Oh foram ejetadas, ainda presas em seus assentos. Eles desamarraram os cintos, afastaram-se da aeronave e pararam para atender os passageiros. Outros passageiros evacuaram o melhor que puderam através de buracos na fuselagem, desesperados para escapar das chamas crescentes. Havia pessoas mergulhadas em chamas e presas nos destroços. As pessoas gritavam e clamavam por ajuda. Os poucos sobreviventes ficaram gravemente feridos com o impacto, alguns com queimaduras graves. Os sobreviventes estavam tentando puxar os passageiros dos destroços em chamas para um local seguro. Oh tinha o cabelo chamuscado e o rosto queimado.

Destroços do voo 801 da Korean Air (Foto: Suboficial de 3ª classe Michael A. Meyers Marinha dos EUA)
Resgate

A aeronave havia atingido um oleoduto durante o acidente e a estrada estava bloqueada, dificultando o deslocamento das equipes de resgate para o local. Quando finalmente chegaram ao local 52 minutos após o impacto, o terreno era difícil de navegar. A tripulação de outra aeronave disse ao controlador de tráfego aéreo sobre a bola de fogo na ravina de Nimitz Hill. Ele não sabia porque não conseguiu monitorar a descida da aeronave. Isso atrasou as equipes de emergência chegando aos destroços e salvando mais vidas.

O milagre

Rika Matsuda tinha 11 anos. Ela estava viajando com a mãe para passar as férias em Guam. Após o impacto, sua mãe ficou presa e mandou que ela fugisse. Infelizmente, sua mãe morreu no incêndio. Rika encontrou um dos comissários de bordo, Lee Yong-ho, e a segurou. A condição de Lee estava piorando; ela foi severamente cortada e entrando e saindo da consciência.

"Eu me deparei com uma jovem que estava bastante arranhada e ela estava agarrada a uma mulher que, pelo uniforme, eu poderia dizer que era comissária de bordo. A comissária de bordo estava em péssimo estado. Juntei os dois e puxei-os para dentro uma depressão no solo a cerca de 20 metros dos destroços. Lembro-me das vozes dos socorristas avisando que parte do avião poderia explodir e meu único pensamento era levar essa garotinha e essa mulher para uma vala ou algo assim, onde poderiam ficar protegidas se houvesse outra explosão", disse o Governador Carl TC Gutierrez.

Mapa de assentos do Korean Air 801 com a localização dos sobreviventes
Fatalidades e sobreviventes

Do total de 254 almas a bordo, houve 228 mortes. Um dos comissários de bordo, Han Kyu-hee, sobreviveu ao acidente, mas morreu depois de seus ferimentos em um hospital especializado em queimaduras nos Estados Unidos. A tripulação de voo morreu, juntamente com 11 dos comissários de bordo. Vinte e dois passageiros sobreviveram e três comissários de bordo, todos com ferimentos graves. Os sobreviventes eram principalmente da seção de primeira classe na frente da aeronave e na parte traseira da cabine na econômica. Alguns sobreviventes no meio da aeronave estavam sentados do lado direito. Não houve sobreviventes do convés superior.

Causa raiz

A principal causa do acidente foi a falha do capitão em instruir a tripulação de voo e executar a abordagem correta. O primeiro oficial e o engenheiro de vôo também falharam em monitorar e checar as ações do capitão. Os fatores contribuintes foram o nível de fadiga do capitão e o treinamento inadequado da tripulação de voo. O desconhecimento do controlador de tráfego aéreo e o descumprimento dos procedimentos também atrasaram a comunicação à equipe de resposta a emergências.

Com informações de Simple Flying

Azul é autuada pela ANAC após voar com avião Embraer E195 amassado

A Azul Linhas Aéreas foi autuada pela Agência Nacional de Aviação Civil (ANAC) por ter liberado uma aeronave para voo sem as devidas correções e autorizações.


O caso aconteceu em 12 de setembro de 2023, quando uma inspeção de rotina da ANAC foi feita no Embraer E195-E2 de matrícula PS-AEE no Aeroporto Internacional de Viracopos, em Campinas, principal centro de operações da Azul.

No documento ao qual o AEROIN obteve acesso, os inspetores da agência identificaram que uma das travas da porta de acesso ao cone traseiro estava danificada e que a porta também estava danificada no local de outra trava. Segundo a ANAC, “claramente este dano não era recente, já havendo marcas de reparos provisórios sobre eles”


Também foi identificado reparo realizado por fita metálica, impedindo visualização dos placares junto à porta de acesso ao cilindro de oxigênio do porão de carga dianteiro. Na ocasião da inspeção não foi apresentada nenhuma liberação de aeronavegabilidade compatível com o reparo, tendo, desta forma, operado a aeronave de forma irregular, ao menos no trecho Rondonópolis – Campinas.

O principal ponto foi uma mossa (amassado) acima do radome do lado direito (como mostra a imagem que ilustra esta matéria). Na ocasião da inspeção não foi apresentado nenhuma liberação de aeronavegabilidade compatível com o dano.

Já nas asas, foram encontrados reparos em fita metalizadas sem registros disponíveis e com algumas pontas soltas nas canoas que servem de carenagem para o sistema de acionamento dos flapes, além de outros reparos em fitas inadequados nos estabilizadores horizontais.


A empresa posteriormente respondeu à ANAC, ainda em setembro, com as liberações feitas pelos técnicos de manutenção da empresa após uma análise ainda no aeroporto. No entanto, como a agência considerou que a aeronave não deveria ter voado sob aquela condição, emitiu uma multa no final do mês de março, que pode chegar até R$ 10 mil, com possibilidade de desconto de 50% caso a empresa não recorra (similar ao que ocorre com carros com adesão ao SNE).

A Azul ainda está no prazo para recorrer da multa e pagá-la com desconto.

Via Carlos Martins (Aeroin) - Fotos: Reprodução

sábado, 13 de abril de 2024

Raio pode derrubar um avião? O que acontece com a aeronave nessa hora?

Aviões são atingidos por raios enquanto voam
(Imagem: YouTube/Sjónvarp Víkurfrétta/Ziggy Van Zeppelin/ Valk Aviation)
Milhares de aviões são atingidos por raios anualmente. Estima-se que cada um dos mais de 27 mil aviões comerciais espalhados pelo mundo seja atingido pelo menos de uma a duas vezes por ano.

Mesmo causando preocupação nas pessoas, e até mesmo sendo assustador às vezes, hoje isso não representa mais riscos para quem está voando. Os aviões modernos são desenvolvidos para não sofrerem com os raios, e ainda passam por revisões de segurança cada vez que isso ocorre.

Avião de Miley Cyrus foi atingido 


No mês passado, a cantora norte-americana Miley Cyrus postou em suas redes sociais que seu avião havia sido atingido por um raio. 

Ela voava da Colômbia com destino a Assunção, capital do Paraguai, mas, após a ocorrência, precisou fazer um pouso não programado no aeroporto de Guarani, perto de Ciudad del Este, devido ao mau tempo. 

A cantora mostrou o momento em que o raio atinge o avião e, posteriormente, como ficou um pedaço da fuselagem atingida. Houve apenas um susto, e poucas horas depois os passageiros foram realocados em outros voos enquanto o avião era inspecionado.


Proteção


Quem está dentro de um avião não sofre com a descarga elétrica de um raio devido ao conceito da Gaiola de Faraday. De maneira simplificada, a fuselagem metálica do avião forma um invólucro que conduz a eletricidade à sua volta, mantendo quem está do lado de dentro seguro.

Assim, o raio é conduzido pelo lado de fora da aeronave apenas, e quem está do lado de dentro deve sentir só o incômodo do clarão e do som (se for o caso). 

Até mesmo nos aviões modernos, com a fuselagem feita de materiais compósitos, que não são tão bons condutores de eletricidade, há estruturas e tratamentos para isso. Nessas situações, os materiais, como a fibra de carbono encontrada na fuselagem, são cobertos com uma fina camada de cobre, além de serem pintados com uma tinta que contém alumínio.

Nariz do avião possui fios condutores para não ser afetado caso seja atingido por raios
(Imagem: Alexandre Saconi)
Um desses locais é o nariz do avião, que não costuma ser de material metálico, já que ali ficam sensores e o radar meteorológico da aeronave. Caso ele fosse metálico, atrapalharia os sinais dos equipamentos e, por isso, ele conta com fios para conduzir a eletricidade para o corpo do avião e dissipá-la no ambiente.

Precisa pousar?


Em grande parte das vezes em que um avião é atingido por um raio, o piloto decide pousá-lo para que sejam feitas inspeções de segurança. São os tripulantes que definem se será possível continuar voando até o destino ou se será preciso colocar o avião no solo o quanto antes.

O ponto onde o raio atinge o avião não costuma ser grande, e sua dimensão pode ser a mesma da cabeça de um lápis. Isso é detectado pelas equipes de manutenção no solo, que observarão se não há maiores danos. 

Essas marcas podem ser, por exemplo, um rebite danificado, um ponto mais escurecido na pintura, tinta lascando, entre outras. Dependendo do tamanho do dano, o avião pode continuar a voar normalmente por um tempo, ainda que alguma pequena parte tenha sido danificada.

Para inspecionar todo o contorno do avião, algumas empresas usam, inclusive, drones com câmeras para poder observar em partes mais difíceis de serem alcançadas se houve algum dano.

Avião já caiu por raio (mas isso é coisa do passado)


Em dezembro de 1963, o avião que fazia o voo Pan Am 214 caiu em decorrência de um raio, matando todas as 81 pessoas a bordo. O Boeing 707 se aproximava do aeroporto internacional da Filadélfia (EUA) quando um raio atingiu sua asa.

O relatório do acidente indicou que a causa mais provável para a queda tenha sido uma explosão da mistura de combustível com o ar dentro da asa, que teria sido induzida pelo raio.

Após essa tragédia, foram feitas algumas recomendações de segurança, entre elas: 
  • Instalação de descarregadores de eletricidade estática nos aviões que ainda não os possuíam;
  • Utilização apenas de combustível Jet A nos aviões comerciais, já que esse gera menos vapor inflamável em comparação com outros combustíveis;
  • Mudança de peças e sistemas nos tanques das asas para evitar a formação de vapores que possam entrar em ignição com tanta facilidade.
Os computadores dos aviões modernos também são blindados para evitar qualquer tipo de problema. Somando-se a isso, pilotos tendem a evitar regiões com nuvens mais carregadas, onde há mais chance de esse tipo de descarga ocorrer.

Via Alexandre Saconi (UOL) - Fontes: Consultoria Oliver Wyman; Anac (Agência Nacional de Aviação Civil), Iata (Associação Internacional de Transportes Aéreos, na sigla em inglês), Inpe (Instituto Nacional de Pesquisas Espaciais), Blog da KLM e Serviço Meteorológico Nacional dos Estados Unidos.

sexta-feira, 12 de abril de 2024

'Caveirão voador': Polícia do RJ usa helicóptero da Guerra do Vietnã

Helicóptero Huey da Polícia Civil do RJ; exemplar esteve na Guerra do Vietnã (Imagem: Divulgação)
A Polícia Civil do Rio usa um helicóptero das forças armadas dos EUA que esteve na Guerra do Vietnã (1959 a 1975).

Como é a aeronave?

O helicóptero é um Bell UH-1H. O modelo também é chamado de Huey. Ele foi fabricado em 1967. Seu número de série é o 67-17304. O mesmo exemplar esteve na Guerra do Vietnã. Ele ficou lá de 1968 a 1971.

Essa unidade era apelidada de Strange Daze pelos militares. Especula-se que esse nome seja uma referência a uma música da banda The Doors ("Strange Days"). Ele também serviu na força de segurança pública nos EUA. Isso ocorreu após deixar o Exército norte-americano.

O helicóptero é apelidado de "caveirão voador" ou "caveirão do ar". É uma comparação com o blindado usado pela Polícia Militar do Rio de Janeiro.

Helicópteros do mesmo modelo também foram utilizados pela FAB (Força Aérea Brasileira) entre 1967 e 2018. Na Aeronáutica, seu apelido era "Hzão" ou "Sapão".

Passou a ser usado no Rio em 2008

O helicóptero começou a voar pela Polícia Civil do Rio em 2008. Antes disso ele estava nos Estados Unidos. Foi trazido em uma viagem de seis dias devido à necessidade de parar a cada 455 km, que é a distância máxima que ele pode voar sem reabastecer.

A aeronave possui blindagem contra disparos de arma de fogo, como pistolas e fuzis. Seu custo estimado é de R$ 8 milhões. A Polícia Militar do Rio de Janeiro também possui um Huey.

Helicóptero 'descartável'

Helicóptero UH-1 Huey sendo jogado ao mar ao final da Guerra do Vietnã,
durante a operação Vento Constante (Imagem: Divulgação/Marinha dos EUA)
Os militares norte-americanos jogaram dezenas de helicópteros como o Huey no mar com o fim da Guerra do Vietnã. A medida foi necessária para abrir espaço de resgate nos navios onde os helicópteros ficavam.

Muitas pessoas estavam fugindo do Vietnã na época. Elas iam em direção aos porta-aviões dos EUA.

Não havia muito espaço no convés dos navios. Assim, helicópteros eram atirados ao mar para permitir novos pousos de resgate.

Ao menos 45 UH-1 Huey foram lançados na água. Outros três CH-47 Chinook também foram arremessados.

Perigo em voos

A blindagem do "caveirão do ar" tem um motivo. Há diversos casos de helicópteros que sobrevoam o Rio foram atingidos por disparos a partir do solo.

Associação emitiu alerta a pilotos sobre tiros. A Associação Brasileira de Pilotos de Helicóptero divulgou um mapa em 2022 de regiões da cidade do Rio de Janeiro onde sobrevoos de helicópteros devem ser evitados devido ao alto risco de disparos de arma de fogo.

A medida ocorreu após piloto de helicóptero particular relatar ter sido alvo de tiros. O caso aconteceu na Vila Cruzeiro, e, apesar de estar a uma distância segura, a aeronave foi perfurada pelos disparos.

Ficha Técnica

A norte-americana Bell oferece uma versão modernizada do modelo, o Huey II. Ele conta com novos instrumentos e permite reaproveitar as estruturas dos helicópteros mais antigos para os padrões atuais de voo e segurança.
  • Capacidade: De 12 (configuração padrão) a 15 pessoas a bordo
  • Velocidade de cruzeiro: 196 km/h
  • Distância máxima de voo: 455 km
  • Tempo máximo de voo: 2 horas e 36 minutos
  • Volume do tanque: 799 litros
  • Peso vazio: 2,5 toneladas
Via Alexandre Saconi (Todos a Bordo)

É seguro? Caminho de sua mala até o avião percorre labirinto escuro


Brasileiras tiveram malas trocadas nos bastidores do aeroporto de Guarulhos e acabaram sendo presas em Frankfurt, Alemanha, por tráfico internacional de drogas. As bagagens com as etiquetas delas estavam cheias de cocaína.

O caso é fora do comum na rotina de um aeroporto, até pela atuação de uma quadrilha. Nos bastidores, o normal é um clima de correria constante, assim como uma insistente mistura de perfumes que paira sobre o ar daqueles que estão escolhendo pacotes de chocolates etiquetados com valores em dólares.

Como funciona o sistema que leva suas bagagens despachadas do balcão até as aeronaves?


Estamos no meio do free shop de um saguão de embarques, mas não entraremos em nenhum voo. Entre uma vitrine de perfumes e a parede de outra loja, somos levados a um corredor de serviço que não conta com o glamour dos inúmeros anúncios de cosméticos estampados alguns passos atrás. Este é o segundo labirinto de portas, acessos e liberações por crachás que passamos para acessar a parte técnica do aeroporto.

A primeira é uma rigorosa inspeção de documentos enviados previamente e uma triagem passando por raio-x e detectores de metal até mais minuciosa das enfrentadas pelos viajantes. Dividimos a fila e burocracia com trabalhadores das áreas e do próprio aeroporto que enfrentam diariamente aquele protocolo para chegar nesta área reservada do aeroporto.

Cadê todo mundo?


Depois de uma passagem pela sala de controle, finalmente vamos conhecer as esteiras: aí sim a palavra labirinto pode ser usada de maneira apropriada. Perder-se ali dentro não seria uso exagerado da expressão, e sim uma realidade. Se a sua imagem mental de como sua mala vai do balcão até o avião inclui inúmeros trabalhadores, esqueça.

O que se vê ali são dezenas de centenas de metros de esteiras, rampas e esquinas por onde os mais diferentes tipos de bagagem passam por ali, desengonçadas, trombando pelas paredes e esbarrando em quinas e desaparecendo na escuridão.

É como se fosse uma grande fábrica, escura, com um som intermitente de maquinário, mas não há matéria-prima e nem produto final: só malas indo e vindo e sem parar em um balé que parece caótico, mas organizado por códigos de barra e feixes de laser que fazem suas leituras milhares de vezes por minuto.

Segundo dados passados por um dos funcionários da Vanderlande, que nos guiou juntamente com a equipe da Sita, que é provedora de toda TI da estrutura, são cerca de 350 mil bagagens por mês que passam por ali naquele terminal.

Um labirinto escuro, mas organizado


Quando os funcionários da Sita ou da Vanderlande estão conversando entre si, sempre surge a expressão "bipar". O termo é usado toda vez que é realizada a leitura do código de barra que é fixado na sua mala na hora da entrega no balcão de check-in. Daí a palavra surgida do barulhinho que os aparelhos fazem quando fazem cada registro.

Este é uma parte crucial de todo o sistema que roda ali. É aquela sequência de dígitos que não faz sentido algum para um leigo que determina o proprietário da mala, a companhia aérea, número do voo, qual esteira foi deixada, destino, onde ela está e outras informações que farão com que ela chegue ao avião.

São esses números que fazem o sistema rodar parte mais complexa dos bastidores, definir qual bagagem vai para cada voo. "E caso exista mais de um código de barra na mala?", pergunta a reportagem. De acordo com nosso guia, o algoritmo é inteligente o suficiente para entender os códigos ativos e aqueles expirados. Por via das dúvidas, não custa nada retirar as etiquetas antigas de outras viagens que podem ainda estar presas à bagagem.

Em sua penúltima parada antes do avião, as esteiras levam as malas para um mecanismo que chamam de "sorter" (selecionador, em tradução livre). Cada mala fica sobre uma plataforma conectada com rampas em um andar inferior. Dependendo do destino da mala e das informações colocadas no sistema, estas bandejas se viram e despejam as bagagens na sua respectiva rampa (ver 1min13 do vídeo acima).

Dali, elas escorregam até operadores — nesta etapa sim vemos mais presença humana — que vão organizar as malas nos carrinhos que serão conduzidos até as aeronaves.

Tá olhando o quê?


A rigorosa segurança que enfrentamos para entrar nesta área reservada também acontece com as bagagens. São várias áreas de checagem de raio-x e protocolos para manter as malas seguras. Quem assistiu a qualquer reality show de aeroporto sabe do que falamos: o temor de se ver em meio a um contrabando ou simplesmente ter algo bem seu extraviado.

Existe inclusive um monitoramento dos próprios funcionários que estão ali. Caso algum deles faça um número de checagens exagerada em uma mala ou demonstre um certo interesse fora do padrão em alguma bagagem ou voo em específico, isso fará um alerta às equipes responsáveis para averiguar a situação.

É claro que quem já teve sua mala perdida em um voo sempre terá um friozinho na barriga ao deixá-la no balcão, mas tem muita tecnologia envolvida para evitar que isso aconteça. Lembre-se de deixar sua mala bem identificada, arranque as etiquetas de outros voos e boa viagem!

Via Osmar Portilho (Nossa/UOL)

terça-feira, 9 de abril de 2024

Voar é mais seguro do que dirigir? 5 considerações principais


Devido aos avanços tecnológicos, todos os meios de transporte nas últimas décadas passaram por evolução tecnológica, tornando-os mais seguros e confortáveis ​​para seus usuários. Embora um petroleiro prefira dirigir da Alemanha à França, um avgeek preferiria fazer essa viagem de avião.

Esta lista considerará os fatos e tendências para analisar se voar é mais seguro do que dirigir nas estradas, conforme destacado no MIT e no USAFacts.

1. Treinamento e Certificação


Semelhante à obtenção de uma carteira de motorista, os aspirantes a pilotos precisam primeiro passar nos exames teóricos antes de prosseguirem para o treinamento de voo. Depois disso, eles também terão que fazer o treinamento de tipo.

Embora possa ser um desafio qualificar os diferentes níveis de um curso de condução e depois obter uma carta de condução, é seguro assumir que a formação para se tornar piloto e obter a carta é um processo muito mais desafiante e demorado, que é fortemente avaliado. e monitorado ao longo do caminho. Além disso, não se trata apenas de obter a licença e acumular as horas necessárias para pilotar uma aeronave comercial.


Diferentemente do treinamento para obtenção da carteira de habilitação, onde a pessoa é treinada para o tipo de veículo que dirigiria (pesado, leve, manual ou automático), no que diz respeito ao treinamento de voo, o piloto acabaria acumulando horas em um monomotor leve. aeronave, antes de passar para uma aeronave multimotor e, finalmente, para um avião a jato. Mesmo assim, o piloto deve ser treinado em uma aeronave específica antes de ser certificado para voar apenas nesse tipo específico de aeronave.


Isto prova inequivocamente que os pilotos são mais bem treinados, tanto em termos de intensidade como de especificidade, para operar as suas aeronaves do que os motoristas treinados para conduzir os seus veículos.

2. Monitoramento e Rastreamento


Embora não haja câmeras no céu, cada aeronave pode ser rastreada com precisão usando satélites, radar e rastreamento ADS-B.

Assim como as regras de trânsito, existem regras que também devem ser seguidas durante o voo. Semelhante a um motorista que precisa manter uma velocidade mínima ou máxima em uma rodovia, os pilotos que voam em espaço aéreo controlado ou seguindo uma autorização devem ser precisos em sua velocidade, altitude e trajetória.


Como os pilotos recebem dados mais precisos devido ao equipamento de navegação altamente avançado a bordo da aeronave, os pilotos podem ser precisos ao voar a aeronave conforme necessário. O avançado equipamento de navegação, no entanto, também permite o rastreamento da aeronave em tempo real com incrível precisão, o que permite que os pilotos operem voos em um padrão mais elevado.

Além disso, os pilotos também podem ser monitorados. Com sistemas como gravadores de dados de voo e gravadores de voz da cabine incorporados às aeronaves atualmente, é extremamente fácil identificar o que aconteceu em raras situações quando algo dá errado.


Tais níveis de localização de veículos e monitorização de condutores simplesmente não podem existir em grande escala devido à falta de tecnologia e infra-estruturas neste momento.

3. Tráfego!


Semelhante ao tráfego nas estradas, os pilotos também encontram tráfego nos céus.

Quando há muitos veículos em uma estrada, ela pode ficar congestionada e uma visão comum seria ver veículos avançando de para-choque com para-choque. Infelizmente, em tais cenários, também é comum testemunhar pequenos solavancos ou incidentes.


Os aviões, por outro lado, não enfrentam o tráfego da mesma forma que os veículos nas estradas. Não importa o quão lotado o céu pareça em um aplicativo de rastreamento de voo, as aeronaves, por lei, são obrigadas a manter separação umas das outras, tanto no plano vertical quanto no plano horizontal. Embora os pilotos garantam que essas separações sejam mantidas, elas também são garantidas pelos controladores de tráfego aéreo se a aeronave estiver voando em espaço aéreo controlado.


*Entre o FL290 e o FL410, frequentemente, o Mínimo de Separação Vertical Reduzido (RVSM) é usado para reduzir a separação vertical para 1.000 pés.

Além disso, caso duas aeronaves se aproximem demais, as aeronaves possuem tecnologias que se comunicam entre si e emitem alertas auditivos aos pilotos de suas respectivas aeronaves e, se necessário, o TCAS (Traffic Collision Avoidance System) ainda fornece instruções para evitar colisões. aos pilotos.

4. Preparado para qualquer eventualidade


Com os pilotos revisando os procedimentos de emergência no simulador a cada seis meses, eles estão sempre preparados para qualquer eventualidade. A tecnologia avançada a bordo da aeronave torna-a ainda mais segura.

Um equívoco comum entre os passageiros aéreos é que só porque estão pressurizados em um tubo gigante a 40.000 pés, se algo der errado, não há solução possível para o problema. A realidade não poderia estar mais longe da verdade.

Devido aos avanços tecnológicos e às lições aprendidas com incidentes/acidentes passados, os aviões que voam hoje estão extremamente bem equipados para lidar com qualquer cenário concebível, e os pilotos são treinados para reagir a essas situações com segurança.


Os componentes críticos de uma aeronave, como a eletrônica e a hidráulica, têm múltiplas camadas de proteção e, como proteção adicional contra falhas, as aeronaves modernas também são equipadas com RATs (Ram Air Turbines), que atuam como uma fonte adicional de eletricidade e hidráulica .

Com vista para a tecnologia, o design das aeronaves modernas por si só tem várias medidas de segurança incorporadas. Um exemplo importante é como uma aeronave moderna é capaz de planar longas distâncias no caso de múltiplas falhas de motor e ainda pousar com segurança ou (se necessário) cair na água. Se a aeronave cair, todos os passageiros e tripulantes terão coletes de segurança infláveis ​​e alguns escorregadores de fuga de emergência poderão ser destacados e usados ​​como jangadas na água.

De acordo com a European Technical Standard Order (ETSO) formada pela EASA, existem quatro tipos de escorregadores de evacuação, cada um com funções distintas:


Estes são apenas alguns exemplos de recursos de segurança de aeronaves.

5. Estatísticas Puras


Os números mostram a tendência de como voar se tornou exponencialmente mais seguro nas últimas décadas.

Um estudo realizado no MIT em 2020 mostra uma tendência tangível de redução das estatísticas de mortalidade na indústria da aviação.


Estes dados mostram claramente que as mortes relacionadas com viagens aéreas estão a diminuir exponencialmente, enquanto o número de passageiros e o número de voos estão a aumentar. Dados recentes divulgados pela USAFacts mostram que, de 2002 a 2020, ocorreram 614 feridos graves (uma média de 32 por ano) na indústria da aviação dos EUA. Durante o mesmo período, registaram-se 44 milhões de ferimentos graves (uma média de 2,3 milhões por ano), relacionados com veículos rodoviários nos EUA.

Conclusão

A única conclusão que pode ser derivada das estatísticas e dados acima é que voar é mais seguro do que dirigir e continua sendo o meio de transporte público mais seguro disponível.

Com informações do Simple Flying

segunda-feira, 8 de abril de 2024

História: Voo Olympic Airways 417 - Um momento chave para a proibição de fumar em voo

O incidente ocorreu em um voo do Cairo para Nova York via Atenas.

Boeing 747 da Olympic Airways (Foto: Eduard Marmet)
Estamos todos familiarizados com a visão da luz 'proibido fumar' ao lado dos sinais de cinto de segurança em aeronaves comerciais. A proibição geral de fumar a bordo de aeronaves foi um processo gradual, com diferentes países impondo restrições diferentes em momentos diferentes. No entanto, um ponto de virada importante ocorreu há pouco mais de 24 anos, em janeiro de 1998, envolvendo um trágico incidente a bordo do voo 417 da Olympic Airways.

O voo em questão


A antiga transportadora de bandeira grega Olympic Airlines levou o nome Olympic Airways durante grande parte de seus 52 anos de história. Isso incluiu o momento em que ocorreu o incidente envolvendo o voo 417, ou seja, 4 de janeiro de 1998. O voo era um serviço que tinha origem no Cairo e seu destino era Nova York. Como costumava ser mais comum em voos de longo curso no século 20, fez uma parada ao longo do caminho.

O local onde o serviço pousou no caminho foi o principal hub da Olympic em Atenas, na Grécia. Foi aqui que o Dr. Abid Hanson e sua esposa, Rubina Husain, embarcaram no voo com destino a Nova York. A aeronave que operava o vôo em 4 de janeiro de 1998 era um Boeing 747 que tinha duas seções para fumantes e não fumantes em sua considerável cabine de passageiros da classe econômica.

Os passageiros dos 747s da Olympic podiam fumar em certos assentos (Foto: Alan Lebeda)

Fumar foi apenas parcialmente proibido


Naquela época, fumar não era totalmente proibido nas cabines de passageiros, embora fosse proibido nos banheiros das aeronaves desde 1973. Isso aconteceu depois que um cigarro descartado em um banheiro foi considerado um fator na queda do voo 820 da Varig . perto de Paris. Este desastre matou 123 dos 134 ocupantes do Boeing 707.

10 anos depois, em 1983, um incêndio no banheiro em voo envolvendo o voo 797 da Air Canada, que matou 23 de seus 46 ocupantes, levou as companhias aéreas a serem obrigadas a instalar detectores de fumaça nos banheiros de suas aeronaves. Como tal, os passageiros não podiam mais se retirar para o banheiro para fumar. No entanto, alguns países e companhias aéreas ainda permitiam a prática em determinadas áreas de suas principais cabines de passageiros.

Curiosamente, isso desempenhou um papel no desvio do vôo 9 da British Airways em 1982. Isso viu um Boeing 747 perder energia para todos os seus motores depois de voar através de cinzas vulcânicas. Isso fez com que a fumaça se acumulasse, mas inicialmente pensava-se que era apenas de cigarros. De qualquer forma, o jato pousou em Jacarta sem ferimentos.

Os países proibiram o fumo a bordo em horários diferentes (Foto: Kashif Mardani)

Nenhuma divisão clara entre as seções


Em 1996, dois anos antes do incidente envolvendo o voo 417 da Olympic Airways, a ICAO havia pressionado por uma proibição geral de fumar a bordo de voos internacionais. No entanto, nenhuma legislação desse tipo havia entrado em vigor até o dia 4 de janeiro de 1998.

Assim, quando o Dr. Abid Hanson e Rubina Husain embarcaram no 747 em Atenas, eles entraram em uma aeronave com seções para fumantes e não fumantes. O casal estava sentado na seção de não-fumantes, devido à sensibilidade de Hanson à fumaça e 'reações anafiláticas recorrentes'. No entanto, estar sentado longe dos fumantes não foi suficiente neste caso, pois não havia divisão física entre as duas seções.

Como tal, os não-fumantes ainda podem experimentar o fumo passivo se estiverem sentados nas proximidades. Devido à sensibilidade de Hanson e ao fato de que seus assentos ficavam a apenas três fileiras da seção de fumantes, o casal perguntou se poderiam se mudar para outro lugar.

Uma trágica reação alérgica


O voo em que Hanson e Husain viajavam foi bastante movimentado, como costuma acontecer nos setores transatlânticos. No entanto, havia 11 assentos vagos a bordo, para os quais Hanson poderia ter se mudado para não acionar sua sensibilidade à fumaça da seção adjacente. Como tal, a família solicitou tal transferência.

No entanto, um comissário de bordo da Olympic Airways recusou este pedido, apesar de ter sido feito três vezes de acordo com a documentação do tribunal. Com a prevalência de fumaça aumentando na cabine, o Dr. Hanson, que também sofria de asma, optou por dar um passeio em direção à frente do jato. Ele o fez em busca do ar mais fresco que poderia ser encontrado longe da seção de fumantes.

Infelizmente, porém, ele tomou essa atitude evasiva tarde demais. Após sua exposição ao fumo passivo, mais tarde ele sucumbiu a uma reação alérgica. Tragicamente, o Dr. Hanson faleceu algumas horas depois, apesar dos cuidados médicos.

O processo judicial


Após a morte de Hanson, Husain entrou com pedido de indenização contra o Olympic. Ela o fez de acordo com o artigo 17 da Convenção de Varsóvia, que permite que danos sejam reivindicados após acidentes em voo. Tendo apresentado a reclamação em um tribunal distrital da Califórnia, Husain recebeu uma quantia de US $ 1,4 milhão em danos após a decisão de que a morte de Hanson foi acidental.

Husain pediu indenização da Olympic na Suprema Corte (Foto: Phil Roeder)
A Olympic Airways optou por recorrer desta decisão prejudicial, com o processo indo até o Supremo Tribunal. A transportadora argumentou que a natureza da morte de Hanson, envolvendo uma condição pré-existente agravada pelas condições do avião, poderia ser vista como não tendo sido acidental sob os estatutos da Convenção de Varsóvia.

O caso foi discutido em novembro de 2003 e decidido em fevereiro seguinte. Embora não seja unânime, o tribunal decidiu por 6 a 2 a favor de Husain, citando a recusa em permitir que Hanson mudasse de assento como um 'elo da corrente' quando se tratava de sua morte.

Por que os banheiros ainda têm cinzeiros?


Os trágicos eventos do voo 417 da Olympic Airways e o caso subsequente da Olympic Airways vs Husain são vistos como um ponto de virada importante no debate em torno do tabagismo a bordo. No final dos anos 1990 e início dos anos 2000, várias proibições mais amplas foram implementadas, como nos EUA em 2000. Anteriormente, era permitido fumar a bordo de voos comerciais que duravam mais de seis horas.

Os banheiros mantêm cinzeiros hoje, apesar da proibição (Foto: Michael Ocampo)
Fumar é agora quase universalmente proibido a bordo de aeronaves de passageiros. No entanto, você provavelmente deve ter notado que seus banheiros ainda têm cinzeiros e placas de 'proibido fumar'. Segundo a Time, é assim que, se um passageiro sentir a necessidade de quebrar as regras, ele tem um lugar seguro para descartar o cigarro.

E os cigarros eletrônicos?


Nos últimos anos, o uso de cigarros eletrônicos (às vezes conhecido como 'vaping') tornou-se um fenômeno mais comum, à medida que as pessoas procuram encontrar alternativas ao fumo. Como tal, esta é também uma área em que as companhias aéreas e os aeroportos tiveram que estabelecer regras. Sendo um zeitgeist relativamente novo, o Gatwick Airport Guide observa que " não há regras gerais sobre o uso de cigarros eletrônicos em aviões ".

O aeroporto de Stansted (foto) proibiu o uso de cigarros eletrônicos em ambientes fechados
em agosto de 2014 (Foto: Aeroporto de Londres Stansted)
Tomando o Reino Unido como exemplo, embora não haja uma diretiva mundial sobre o assunto, o vaping nos aeroportos do país e em suas companhias aéreas é amplamente proibido. Além disso, só podem ser transportados na bagagem de mão dos passageiros. Isso significa que os usuários de cigarros eletrônicos devem armazenar os líquidos correspondentes em recipientes de 100 ml ou menos.

Via Simple Flying - Com Guia do Aeroporto de Gatwick e Time