Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens
Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens

segunda-feira, 18 de março de 2024

Por que certos aviões Airbus emitem um ruído de 'latido de cachorro'?

A fabricante europeia Airbus representa metade do duopólio Airbus-Boeing que domina a indústria. As aeronaves das duas empresas competem diretamente uma com a outra em vários mercados, e muitas vezes há pouco para separar as duas. No entanto, uma diferença distinta entre as aeronaves Airbus e Boeing é o barulho de latido que às vezes pode ser ouvido nos aviões da primeira. Mas por que é esse o caso e de onde vem isso?

Você já ouviu esse barulho estranho de cachorro? (Foto: Getty Images)

De onde vem o barulho?


A fonte do ruído de latido característico de certos aviões Airbus é um componente conhecido como Unidade de Transferência de Energia (PTU). Esta parte é um elemento dos sistemas hidráulicos da aeronave e facilita a troca de energia de um sistema para outro em caso de falha.

Uma PTU geralmente consiste em uma bomba hidráulica, que é conectada a um motor hidráulico com a ajuda de um eixo. O Airbus A320 possui um PTU reversível ou 'bidirecional'. Esta configuração permite que um de seus sistemas ajude o outro em caso de falha ou perda de pressão.

A família Airbus A320, incluindo o A321, apresenta um PTU reversível (Foto: Vincenzo Pace)
O ruído, que por vezes soa semelhante ao de um cão, ocorre devido à natureza em que funciona o PTU. Ou seja, ele faz isso por oscilação, o que faz com que o componente suba e desça repetidamente e de repente. Isso é o que resulta no som de latidos, que pode parecer alarmante à primeira vista. Muitas vezes ocorre no solo, durante a partida e desligamento do motor.

Em qual aeronave você pode ouvir esse barulho?


De acordo com Ask The Pilot de Patrick Smith, o 'latido' tende a ocorrer nos jatos bimotores da Airbus. Isso incluiria os membros de suas famílias A320 e A330 maiores. No entanto, ele tende a pertencer a designs mais antigos. Como tal, é improvável que você ouça isso em um membro da família A320neo.

A nova série Airbus A320neo tem amortecedores para abafar o barulho do latido (Foto: Getty Images)
O The Points Guy relata que isso ocorre porque a Airbus apresentou uma solução para diminuir o ruído em sua família de corpo estreito de próxima geração. Sentiu a necessidade de fazer isso, pois os testes iniciais descobriram que o ruído era ainda mais alto do que nos modelos anteriores, de acordo com a Reuters. Como tal, ele equipou as bombas do PTU com amortecedores hidráulicos próximos aos motores e à raiz da asa.

Sem 'latidos' em aeronaves Boeing


As aeronaves produzidas pela Boeing com sede em Chicago diferem de seus concorrentes da Airbus por não emitirem tal ruído. Isto porque, apesar de também apresentar um PTU, os seus sistemas hidráulicos funcionam de forma diferente dos do fabricante europeu. Esta configuração consiste especificamente em dois sistemas hidráulicos, bem como um sistema de espera.

A configuração hidráulica da Boeing significa que suas aeronaves não emitem o
ruído de latido encontrado em alguns projetos de Airbus (Foto: Getty Images)
O PTU tem menos envolvimento na configuração da Boeing e só vai intervir quando o avião estiver no ar. É uma contingência útil que pode fornecer aos sistemas hidráulicos a pressão extra necessária se um deles cair.

Ele também alimenta o sistema hidráulico das venezianas da aeronave. De modo geral, embora o barulho de latidos seja certamente uma sensação alarmante ao ouvi-lo pela primeira vez, ele não compromete a segurança da aeronave de forma alguma.

sábado, 16 de março de 2024

Hoje na História: 16 de março de 1926 - Lançamento do primeiro foguete movido a combustível líquido

Em 16 de março de 1926, às 14h30, Robert Hutchings Goddard, Ph.D., professor de física na Clark University, lançou o primeiro foguete movido a combustível líquido de sucesso da fazenda de sua tia Effie (conhecida como “A Fazenda Asa Ward”), em Auburn, Massachusetts.

Robert H. Goddard, Ph.D., com o "Nell", o primeiro foguete movido a combustível líquido, montado na plataforma de lançamento em Auburn, Massachusetts, 16 de março de 1926 (Foto: Percy M. Roope)
Em seu diário, o Dr. Goddard escreveu:

“16 de março. Fui para Auburn com S [Henry Sachs] pela manhã. E [Esther Christine Kisk Goddard] e o Sr. Roope [Percy M. Roope, Ph.D.] saíram às 13h. Foguete tentado às 14h30. Ele subiu 41 pés e caiu 54 metros em 2,5 segundos, depois que a metade inferior do bocal queimou...”

O foguete "Nell", de Goddard (Imagem: Arquivo da Clark University)
O foguete, chamado Nell e conhecido como Goddard 1, era movido a gasolina e oxigênio líquido. Ele tinha 3,429 metros de altura e pesava aproximadamente 10,4 libras (4,7 quilos) quando abastecido. O motor produziu um impulso estimado de 9 libras (40 newtons).

Dr. Robert H. Goddard com "Nell", um foguete movido a combustível líquido, em sua loja na Clark University (Foto: Museu Nacional da Força Aérea dos Estados Unidos)
O nome "Nell" foi uma referência ao personagem-título de “Salvation Nell”, uma peça de 1908 de Edward Brewster Sheldon. A personagem foi interpretada pela atriz principal da época, Minnie Maddern Fiske, nascida Maria Augusta Davey, e popularmente conhecida simplesmente como “Sra. Fiske.”
A Apollo 10 (AS-505) decola do Complexo de Lançamento 39B no Centro Espacial Kennedy, Cabo Canaveral, Flórida, 16:49:00 UTC, 18 de maio de 1969 (Foto: NASA)
Apenas 43 anos depois, às 16h49 UTC, em 18 de maio de 1969, um foguete Saturn V multiestágio alimentado por combustível líquido, Apollo 10 (AS-505) decolou do Complexo de Lançamento 39B no Centro Espacial Kennedy, Cabo Canaveral, Flórida.

Edição de texto e imagens por Jorge Tadeu

sexta-feira, 15 de março de 2024

BOEING 2707: Ambicioso projeto de avião supersônico dos EUA estava condenado desde o início

Os Estados Unidos perderam a corrida antes que a Boeing apresentasse um projeto, ou mais precisamente em um dia fatídico em Dallas.


O presidente John F. Kennedy, em junho de 1963, subiu ao pódio no Falcon Stadium, o estádio de futebol da Academia da Força Aérea em Colorado Springs. Ao dirigir-se à turma de formandos de cadetes, anunciou que os Estados Unidos embarcariam no desafio de construir o primeiro avião comercial supersônico do mundo. Foi o início declarado de uma corrida de três vias entre os EUA, o Concorde e o Tupolev Tu-144, de construção soviética. Os EUA ficariam pior do que antes – a nação nem sequer cruzaria a linha de chegada.


Kennedy estabeleceu especificamente o objetivo de “desenvolver o mais cedo possível o protótipo de um avião de transporte supersônico comercialmente bem-sucedido, superior ao que estava sendo construído em qualquer outro país do mundo”. É certo que o discurso não foi tão inspirador, bombástico ou memorável como o que ele proferiu na Universidade Rice, em Houston, no ano anterior. Você conhece qual. “Optamos por ir à Lua nesta década e fazer outras coisas, não porque sejam fáceis, mas porque são difíceis.”


Enquadrar o desenvolvimento de um avião supersônico como uma competição internacional foi um movimento natural com uma lógica semelhante à da Corrida Espacial. O governo dos EUA temia que o lugar preeminente do país na indústria da aviação pudesse ser usurpado pela União Soviética ou pelos esforços combinados da França e do Reino Unido. A Administração Kennedy dedicaria financiamento público a uma empresa privada para o programa, mas seria necessário apoio público para o dinheiro dos contribuintes.Maquetes em escala dos aviões supersônicos Boeing 2707, Concorde e Tu-144.

Maquetes em escala dos aviões supersônicos Boeing 2707, Concorde e Tu-144


Um memorando foi preparado para Kennedy apenas dois dias antes do discurso na Academia da Força Aérea. O documento descreveu a situação atual e os requisitos básicos para um potencial avião supersônico americano. A aeronave deveria viajar mais rápido que Mach 2,2, transportar pelo menos 150 passageiros e ter alcance suficiente para voar entre Nova York e Paris. A única coisa que o presidente teve que fazer foi dar a sua aprovação. O memorando terminou com um pós-escrito dirigido diretamente a Kennedy:

Sr. presidente –

Os dois maiores riscos deste programa são que a indústria dos EUA possa ser capaz de

– (1) superar o estrondo sônico para que seja tolerado pela população, e

– (2) reduzir o custo a um nível competitivo.

Parece que vale a pena correr esses riscos.

Com a aprovação do Presidente, o programa passou para uma competição aberta de design entre empresas aeroespaciais americanas. Kennedy não viveria para ver o fim deste processo, pois foi morto por Lee Harvey Oswald em Dallas, apenas cinco meses depois. Os projetos foram apresentados pela Lockheed, North American e Boeing no início de 1964.

Maynard Pennell designer-chefe do B2707 com a maquete
(Fotos: Arquivos Históricos da Boeing colorida por Benoit Vienne)
Mesmo antes de um vencedor ser selecionado, o pós-escrito assombraria o programa. Os custos já eram astronômicos. O Congresso teria de aprovar 100 milhões de dólares antecipadamente, ou 1 bilhão de dólares atualmente, quando ajustado pela inflação. A administração esperava cobrir no máximo 75 por cento dos custos de desenvolvimento, estimados em 750 milhões de dólares (7,5 bilhões de dólares atualmente corrigidos pela inflação). O boom sônico também provou ser um problema pior do que se temia inicialmente.

Mockup do 2707 em construção é apresentado pela Boeing aos seus funcionários
A Administração Federal de Aviação, com a ajuda da Força Aérea dos EUA, enviou caças para bombardear Oklahoma City com estrondos sônicos durante seis meses consecutivos em 1964. O experimento pretendia testar a resiliência da população, quebrou janelas e provocou reclamações de milhares de pessoas.


O Boeing 2707 seria escolhido como projeto vencedor em 1967, mesmo seguindo um caminho tecnológico de alto risco com uma apresentação radical de asa de geometria variável. Embora a fabricante alegasse que seu projeto SST (SuperSonic Transport) teria custos por assento-milha inferiores aos do 707, acabou prometendo demais e nunca cumpriu prazo. A Boeing tinha planos para uma aeronave de 250 assentos que pudesse navegar a Mach 3, excedendo em muito os requisitos do governo. Ele precisava ser construído inteiramente em aço inoxidável e materiais de titânio que eram considerados difíceis de trabalhar na época. O potencial mercado lucrativo previsto para recuperar os custos de desenvolvimento secou imediatamente.

A Boeing descartou a asa de geometria variável em outubro de 1968 em favor de um projeto de asa delta fixa, mas à medida que a construção da maquete prosseguia, a aeronave encontrou outro obstáculo muito maior do que a barreira do som – a barreira de custo.

Vinte e seis companhias aéreas se comprometeram com 122 posições de entrega, sendo Pan Am, TWA e Alitalia entre as primeiras a receber o jato.

Imagens do interior e da cabine do Boeing 2707
Embora o Presidente Richard Nixon quisesse continuar a investir dinheiro no programa supersônico, os únicos argumentos que lhe restavam para manter o fluxo de financiamento eram o orgulho nacional e o apoio a uma indústria aeroespacial estagnada. Em 1971, o Senado votou 51-46 para encerrar o financiamento do programa e, como resultado, a Boeing cancelou o desenvolvimento. A fabricante precisaria de pelo menos mais US$ 500 milhões (US$ 3,8 bilhões em dólares atuais) para colocar dois protótipos 2707 no ar. No final, a Boeing construiria dois protótipos ao longo de quatro anos a um custo de US$ 1,44 bilhão em dólares de 1967 ou US$ 35 bilhões corrigido pela inflação.

Um artigo contemporâneo do New York Times resumiu o cerne do debate numa única frase: “As suas perspectivas comerciais eram boas e, em caso afirmativo, porque é que teve de contar com financiamento governamental?”


O Concorde também sofreu atrasos no desenvolvimento e teve custos excessivos, mas os governos britânico e francês mantiveram o rumo. O memorando para Kennedy previa que o Concorde faria seu primeiro voo comercial em janeiro de 1970, mas só atingiu os céus em 1976. Embora fosse uma aeronave tremenda, o Concorde estava quase inteiramente restrito a rotas transatlânticas e dependia de subsídios do governo até ser aposentado em 2003.

O B2707, juntamente com o Concorde, foi um divisor de águas na aviação comercial. Foi a primeira vez que as preocupações ambientais deram o sinal de morte de um projeto.


Mas o desafio de projetar uma aeronave que transportasse três vezes a carga útil do Concorde, o dobro da distância, sem aumentar os preços normais dos bilhetes e sem afetar o meio ambiente, revelou-se impossível e o projeto foi abandonado.

Embora o Senado tomasse a decisão financeiramente prudente, foi negado ao mundo um avião comercial americano exclusivo. O projeto da Boeing foi concebido como um paliativo até que a introdução do 2707 se tornou um ícone por si só. A aeronave tapa-buraco da fabricante foi o Boeing 747.

Via Fernando Valduga (Cavok) - Fonte: Com informações do site Jalopnik

quarta-feira, 13 de março de 2024

Vídeos: Assim voava o Miasischev VM-T ‘Atlant’, avião que carregava o ‘Buran’ no lombo

Esta máquina desafiou as capacidades de voo e peso até então alcançadas no momento de sua criação, sendo capaz de transportar foguetes e ônibus espaciais nas costas.


O Miasischev VM-T, apelidado de ‘Atlant’, começou a servir em centros de pesquisa secretos da União Soviética em janeiro de 1982.

(Imagem: Ministério da Defesa da Rússia/VIRIN)
Naquela época, os grandes lançamentos espaciais da União Soviética eram realizados a partir de desertos localizados no território do atual Cazaquistão.

Sua localização afastada tornava extremamente complexo mover peças para foguetes, satélites, ônibus espaciais e outros artefatos, pois chegavam a pesar várias toneladas.

Localização do Cosmódromo de Baikonur, no atual Cazaquistão (Imagem: TUBS)
Depois de considerar opções, que incluíam até a construção dos foguetes aos pés da plataforma de lançamento, o Kremlin decidiu transportar tudo o que fosse necessário (não importasse o tamanho) a bordo de um avião. Assim nasceu o Miasischev VM-T.

O Miasischev VM-T era uma variante do bombardeiro M-4 ‘Molot’ (o “3M”), uma aeronave destinada a bombardear os EUA, mas reprojetado como um avião de transporte estratégico.

Bombardeiro Miasischev 3MD da Força Aérea Soviética em voo
(Imagem: Departamento de Defesa dos Estados Unidos)
O Miasischev VM-T é conhecido como ‘Atlant’, Atlante ou Atlas (do grego antigo Ἄτλας, o portador; do τλάω, portar, suportar) em referência a um titã de segunda geração a quem Zeus, de acordo com a mitologia grega, condenou a carregar a abóbada celeste nos ombros. O nome combinava perfeitamente, pois o dispositivo fora criado para poder transportar grandes cargas, como se fosse um carro com bagageiro no teto.

(Imagem Aviatekhnik/YouTube)
Sua fuselagem foi esticada em cerca de cinco metros para acomodar a carga, e foram adicionados estabilizadores verticais duplos à cauda, para tornar o avião mais estável, bem como motores novos e mais potentes para que pudesse erguer toneladas de carga.

Os ‘Atlant’ voaram pela primeira vez em 1981 e fizeram seu primeiro voo com carga útil em janeiro de 1982. Sua principal tarefa foi transportar os foguetes da Enérguia de sua fábrica para o Cosmódromo de Baikonur. Em diversas ocasiões, o ônibus espacial soviético Buran também viajou para o cosmódromo na traseira do Miasischev VM-T.


Desde seu comissionamento até a aposentadoria, em 1988, a aeronave foi usada mais de 150 vezes no transporte de peças e componentes aeroespaciais. Esses veículos foram substituídos em 1989 pelo Antonov An-225 Mria. Um dos ‘Atlant’ é mantido no aeródromo de Jukóvski; o outro, está localizado na base de Diaguilevo, em Riazan.


terça-feira, 12 de março de 2024

Eventos de interferência e falsificação de GNSS representam um perigo crescente

Muitos relatos de interferências e falsificações vêm de zonas de conflito.


No ano passado, surgiram relatos de que sinais falsos estavam a pôr em risco os sistemas de navegação de aeronaves na área sobre o Mar Negro. Relatados pela primeira vez pela organização de inteligência de segurança OpsGroup, os relatórios citavam sinais falsos ou bloqueados do sistema global de navegação por satélite (GNSS), afetando os sinais civis do sistema de posicionamento global (GPS) dos EUA, fazendo com que os sistemas de navegação das aeronaves mostrassem informações de posição ausentes ou imprecisas.

Mais recentemente, um membro do OpsGroup relatou ter sofrido falsificação de GPS em 29 de janeiro, após partir do Aeroporto Internacional Ben Gurion (LLBG), em Israel. “Isso durou até o limite do FIR. O ATC foi notificado e forneceu vetores [para nós].”

GNSS é um termo abrangente que se refere a qualquer sistema de posição, navegação e temporização (PNT) baseado em satélite que fornece informações a receptores, como unidades GPS portáteis e aquelas instaladas em aeronaves. O GPS dos EUA é um desses GNSS, e há outros, como o Galileo da Europa, o Globalnaya Navigazionnaya Sputnikovaya Sistema (Glonass), o BeiDou da China e sistemas regionais no Japão e na Índia. Os receptores podem ser configurados para operar em múltiplas constelações GNSS ou em apenas uma. A maioria dos receptores GNSS de aeronaves usa apenas a constelação GPS dos EUA, enquanto muitos receptores GNSS portáteis e relógios com capacidade GNSS utilizam múltiplas constelações.

O bloqueio do GPS sobrecarrega os sinais GNSS relativamente fracos e, nos EUA e em muitos outros países, é contra a lei comprometer o GNSS. Spoofing não é o mesmo que jamming e é mais sofisticado, induzindo o receptor a calcular uma posição falsa, o que poderia desviar a aeronave do curso desejado. Muitos produtos aviônicos modernos dependem do GNSS, e interferências e falsificações podem causar problemas além da navegação, como o desligamento do piloto automático.

Um piloto postou o seguinte no Fórum de Pilotos Phenom (para pilotos que voam em jatos Embraer Phenom 100 e 300) em 3 de dezembro de 2022: Em 01/12 decolei de OPLA [Lahore, Paquistão]. A aproximadamente 1.500 [pés], encontrei bloqueio de GPS (ou talvez falsificação). A falha do GPS causou falha no AHRS e, mais significativamente, a bússola HSI começou a girar rapidamente e ficou inutilizável, e o piloto automático… falhou. O AHRS não se recuperou. É verdade que não voamos [menos de] 200 nós e com as asas niveladas por 5 minutos. Estávamos mais preocupados em voltar ao aeroporto. Dispositivos GPS portáteis também ficaram bloqueados nesta situação. Também recebemos um aviso imediato do TAWS, que precisava ser silenciado. Não posso enfatizar o quão confuso e desconcertante era esse cenário. Decolagem, falha de GPS, alerta de colisão TAWS, desconexão do piloto automático, rotação da bússola HSI, tudo simultaneamente.”

Relatórios crescentes de falsificação

A falsificação de GPS continua a se expandir e aumentar, de acordo com o OpsGroup, que disse anteriormente ter recebido quase 50 relatos de sinais falsos afetando operadores de aeronaves. O grupo soou o alarme pela primeira vez sobre os incidentes de falsificação em setembro passado, citando uma dúzia de relatos de aeronaves que foram alvo de sinais falsos enquanto sobrevoavam o Iraque, perto da fronteira iraniana. Em muitos casos, isto levou à perda completa da capacidade de navegação.

No final de outubro, chegaram relatórios de operações no Mediterrâneo oriental, no Egito, e na abordagem a Amã, na Jordânia. Nestes casos, a aeronave apresentou uma falsa posição de estar estacionária sobre o LLBG, embora estivesse a até 212 nm de distância da área. Os incidentes mais recentes envolveram voos da LLBG que se dirigem para o Líbano com sinais falsificados.

Outros relatórios citados pelo OpsGroup incluem um Gulfstream G650 que apresentou falha total de navegação na partida do LLBG em 25 de outubro. A tripulação relatou: “O ATC informou que estávamos fora do curso e forneceu vetores. Dentro de alguns minutos, nossa posição estimada incerta (EPU) era de 99 nm, FMS, IRS e posição GPS não eram confiáveis. O sistema de navegação pensava que estava 225 milhas náuticas ao sul da nossa posição atual.” Da mesma forma, um Bombardier Global Express foi falsificado na partida do LLBG, recebendo uma posição GPS falsa mostrando-a acima de Beirute. O OpsGroup observou que a tripulação disse: “O controlador nos avisou que estávamos voando em direção a uma área proibida”. Enquanto isso, um Boeing 777 na FIR do Cairo encontrou um período de falsificação de 30 minutos, com uma posição falsa mostrando que a aeronave estava sobre LLBG.

Em 12 de dezembro, de acordo com o OpsGroup, um membro relatou falsificação perto do OPLA enquanto pilotava um Bombardier Global 6500. Ao executar um FMS com entrada de GPS ligada e outro com GPS desligado, a tripulação foi capaz de observar uma posição GPS falsa mostrando o avião 75 nm a nordeste de sua posição real. O ATC disse à tripulação que eles estavam no caminho certo.

Outro membro relatou bloqueio de GPS enquanto voava na Airway A599 na FIR VYYF/Yangon sobre Mianmar.

O que preocupa os especialistas do OpsGroup é que esses problemas sejam uma “descoberta no mundo real de uma falha fundamental no projeto de aviônicos. Se um sinal de posição GPS for falsificado, a maioria das aeronaves será incapaz de detectar o ardil.” A perda de navegação ocorre em alguns casos, enquanto em outros os sinais falsos levaram a “rastreamento errôneo sutil e não detectado”. Nos piores casos, o impacto foi grave – perda completa da navegação a bordo que exige vetores ATC, falha do IRS [sistema de referência inercial] e navegação despercebida fora da rota em direção a áreas de perigo e espaço aéreo hostil. A indústria tem demorado a lidar com o problema, deixando as tripulações sozinhas para encontrar maneiras de detectar e mitigar a falsificação de GPS.”

Uma tática importante para minimizar o risco de falsificação, de acordo com o OpsGroup, é observar um aumento repentino no EPU nas telas do cockpit (se disponível). A falsificação causa um “salto, portanto os valores de EPU saltaram de 0,1 nm para 60 nm e mais de 99 nm em ordem rápida”. Além disso, as tripulações podem receber um aviso EFIS relacionado à navegação, com algumas indo direto para o modo de cálculo morto. Outra pista é uma mudança significativa no horário UTC do relógio da aeronave – os relatórios variam de algumas horas até mudanças de 12 horas. O OpsGroup informa que, se isso ocorrer, as tripulações devem desmarcar as entradas de GPS o mais rápido possível para evitar falhas de navegação mais amplas, mudar para auxílios à navegação convencionais e relatar o problema ao ATC.

Em 26 de dezembro, a companhia aérea de carga UPS enviou uma “notam da empresa” aos pilotos alertando sobre interferências e falsificações no espaço aéreo do Azerbaijão e sobre o Mar Negro, Mar Vermelho e Mediterrâneo Oriental. “A UPS tem estado em contato com a Boeing sobre este assunto e está sendo monitorado ativamente pela Boeing, UPS, EASA e FAA.” O notam alertou: “Falsos alertas de EGPWS [sistema aprimorado de alerta de proximidade do solo] podem ocorrer durante ou a qualquer momento após a falsificação de GPS devido à contaminação da altitude do GPS no EGPWS. Desativar a atualização do GPS no FMC não protegerá o EGPWS contra falsificação.” A UPS pediu aos pilotos que tirassem fotos das indicações e enviassem um relatório do evento. “A Boeing lançará um boletim técnico de operações de voo atualizado em um futuro próximo para abordar modelos específicos”, observou a nota da UPS.

Mapa do grupo de operações

Pesquisa de um professor


“A principal alternativa é um sensor inercial ou [IRS]”, disse Todd Humphreys, especialista em PNT e professor da Escola de Engenharia Cockrell da Universidade do Texas em Austin. “Quando isso é capturado, você percebe que o design em si… parece ter falhas. Em outras palavras, o IRS não está verificando novamente o GPS, está simplesmente girando durante períodos de interrupção do GPS. Se o GPS indicar que tem uma posição, então o IRS está aceitando essa posição sem ceticismo suficiente e atualizando sua localização, velocidade e todos os seus coeficientes internos com base nessa posição.

“A maioria dos jatos executivos tem algo em torno de três ou dois receptores GPS e geralmente pelo menos dois IRSs. Em outras palavras, cada um desses sistemas que são supostamente redundantes [é] capturado pelo mesmo ataque, portanto não oferece nem de longe a redundância que aqueles que os projetaram pensaram que ofereceria. Quando todos eles estão sendo afetados pela mesma fonte e têm uma falha de modo comum, então não há o nível de segurança que você esperava.”

Há alguns anos, Humphreys se deu ao trabalho de construir um falsificador de GPS enquanto trabalhava em seu doutorado. na Universidade Cornell. Demorou seis meses, disse ele, “e foi um grande esforço para mim. Avançando para 2023, você poderá comprar um rádio pronto para uso e baixar o software que está disponível no GitHub. E você tem um falsificador. No entanto, ele não acredita que os chamados hobbyistas estejam por trás dos ataques atuais.

Em sua pesquisa, Humphreys fez parceria com uma rede de satélites de órbita terrestre baixa para identificar locais de ataques de falsificação, usando saídas ADS-B e anomalias em seus sinalizadores de categoria de integridade de navegação (NIC). “Também analisamos o histórico temporal dos locais relatados”, explicou ele. “E a partir dessa história, você pode ver um movimento completamente não físico da aeronave e saber que a unidade ADS-B da aeronave foi capturada. Você está procurando anomalias na trajetória. E a partir de tudo isso, você pode descobrir o que aconteceu.”

Com esta informação, Humphreys conseguiu identificar as origens dos ataques de falsificação, um dos quais foi na periferia oriental de Teerão, no Irão. “Desde então, ataques de falsificação muito semelhantes, com efeitos semelhantes em jatos executivos, tornaram-se bastante difundidos na área do conflito Israel-Gaza. Podem ser alguns dos colaboradores da Palestina ou podem ser apenas as Forças de Defesa de Israel a tentar proteger Israel [dos mísseis guiados por GPS do inimigo].”

“Gosto de dizer que a falsificação é o novo bloqueio, e o que quero dizer com isso é que se você tem a intenção de negar o serviço GPS aos seus adversários, a falsificação é um meio mais potente de fazer isso do que apenas um bloqueio desajeitado. Isso ocorre porque você não precisa de tanta potência de sinal para fazer com que os receptores que você está direcionando exibam informações erradas ou exibam algum sinalizador que indique um mau funcionamento em comparação com um bloqueio. Ao interferir, você deve sobrecarregar os sinais autênticos. Com a falsificação, você só precisa ter sinais da mesma magnitude dos sinais autênticos. Eles são engolidos pelo mesmo receptor. O receptor então fica confuso e não consegue perceber a diferença e muitas vezes levanta uma bandeira e diz: 'Ei, estou fora, você não pode confiar em mim', e então eles lhe negaram o serviço.

Além das mitigações que reduzirão o risco de ataques de falsificação, que estão sendo abordadas pela indústria, Humphreys acredita que uma opção melhor seria simplificar o processo de certificação de aviônicos, especialmente rádios definidos por software, que são muito mais fáceis de atualizar rapidamente. “É difícil manter-se à frente das ameaças se você estiver trabalhando com latências [de tecnologia] de 20 anos. Essa é a natureza deste negócio, infelizmente. Mas esperamos até que algo ruim aconteça antes de fazermos algo a respeito.”

Reunião EASA/IATA


A EASA e a Associação Internacional de Transporte Aéreo realizaram um workshop em janeiro para compartilhar informações sobre incidentes e soluções para interferências e falsificações de GNSS. O workshop concluiu que “a interferência com serviços baseados em satélite que fornecem informações sobre a posição precisa de uma aeronave pode representar desafios significativos para a segurança da aviação”.

Os participantes do workshop concordaram em algumas medidas para tornar os serviços PNT fornecidos pelo GNSS mais resilientes, incluindo a comunicação de eventos, eventualmente para uma base de dados comum; compartilhar orientações dos fabricantes de aeronaves com os operadores; partilhar alertas da EASA sobre ataques com as partes interessadas relevantes; e garantir um sistema de backup com a rede operacional mínima dos tradicionais auxílios à navegação terrestres.

“[Vimos] um aumento acentuado nos ataques a sistemas [GNSS], o que representa um risco à segurança”, disse o diretor executivo em exercício da EASA, Luc Tytgat. “A EASA está a enfrentar o risco específico destas novas tecnologias. Precisamos imediatamente de garantir que os pilotos e as tripulações conseguem identificar os riscos e saber como reagir e aterrar em segurança. A médio prazo, precisaremos de adaptar os requisitos de certificação dos sistemas de navegação e aterragem. A longo prazo, precisamos de garantir que estamos envolvidos na concepção de futuros sistemas de navegação por satélite. Combater esse risco é uma prioridade para a agência.”

A EASA também publicou o Boletim de Informações de Segurança 2022-02R2 sobre este tópico.

O site GPSjam.org mostra áreas onde a interferência prolifera

Atualizações de Aviônica


Os fabricantes de aviônicos estão bem cientes dos problemas de interferência e falsificação do GNSS e estão trabalhando em esforços de mitigação, tanto com equipamentos existentes como com produtos futuros. Na verdade, existem novos padrões que abordam esses problemas, incluindo RTCA DO-384 e FAA TSO C220.

A divisão Litef da Northrop Grumman fabrica IRSs para diversos fabricantes de aeronaves, e Klaus Blatter, gerente de produto de aviação comercial, forneceu algumas informações básicas sobre como esses sistemas funcionam.

“O sistema inercial não recebe informações de GPS, mas calcula a posição apenas com base na medição dos sensores inerciais (numa instalação clássica)”, explicou. “Como esta informação de posição não é afetada pelo GPS, ela não é suscetível a falsificação ou interferência. No entanto, esta informação de posição inercial pura pode não ser precisa o suficiente para manter os requisitos de RNP/RNAV no longo prazo. A correção GPS é realizada no FMS. O FMS decide também se utiliza as informações de posição corrigidas ou não corrigidas do IRS.”

Os IRS modernos calculam uma solução GPS/IRS combinada ou híbrida, acrescentou ele, que é fornecida ao FMS. “Em caso de perda do GPS (ou seja, bloqueio), a solução híbrida continua automaticamente fornecendo informações de posição com base nas medições inerciais. O status da solução híbrida (por exemplo, sem aumento de GPS) também é fornecido ao FMS. O tempo por quanto tempo uma determinada operação RNP/RNAV pode ser mantida após a perda do GPS depende da especificação do sistema inercial. Normalmente, os sistemas inerciais que fornecem uma solução híbrida também fornecem uma solução inercial pura em paralelo.”

A forma como o fabricante da aeronave integra os aviônicos determina se os pilotos podem desligar a entrada do GPS caso ela esteja comprometida. “Nos sistemas inerciais da Litef com solução híbrida, a entrada do GPS pode ser desligada por comandos”, disse. “Mas cabe ao integrador do sistema se o comando for implementado na aviônica.”

Os pilotos devem ser alertados sobre o bloqueio do GNSS, com um alerta de que o aumento do GPS foi perdido, explicou Blatter. “Spoofing é diferente: um sistema inercial com solução híbrida pode realizar verificações de plausibilidade dos dados GPS recebidos. Esses testes podem detectar sinais GPS inconsistentes e descartá-los. No entanto, isso depende do tipo e da qualidade da falsificação. Mesmo que dados suspeitos sejam inicialmente detectados, os dados GPS falsificados podem ser considerados válidos novamente depois de parecerem consistentes novamente. Isso significa que o nível de proteção contra falsificação depende de quão inteligentes as verificações de plausibilidade podem ser feitas.”

O novo padrão de desempenho RTCA DO-384 para IRSs ajudará no bloqueio e falsificação, disse ele.

Um Boeing 737-800 voando perto da fronteira iraniana conseguiu superar um encontro de falsificação de GPS usando atualização DME para fornecer uma posição precisa. © Grupo de operações

Honeywell


A Honeywell planeja certificar um sistema compatível com RTCA DO-384 este ano para um avião comercial e no próximo ano para sua unidade de referência microinercial Laseref VI (IRU). A Honeywell também publicou uma carta de informações de serviço “descrevendo as indicações de falsificação e os comportamentos esperados dos aviônicos”. Para procedimentos mais específicos relacionados a aeronaves e aviônicos, a Honeywell recomenda consultar o fabricante da aeronave. No entanto, Matt Picchetti, vice-presidente e gerente geral de navegação e sensores da empresa, ofereceu informações adicionais sobre os IRUs da Honeywell.

“Os atuais produtos Honeywell ADIRUs e micro-IRU produzem dois tipos diferentes de parâmetros de navegação: um conjunto inercial puro de parâmetros de navegação e um conjunto híbrido inercial/GPS de parâmetros de navegação. O conjunto inercial puro de saídas de navegação não é auxiliado por medições de GPS e, portanto, não é afetado pela perda de GPS ou falsificação de GPS durante o vôo. Além dos parâmetros inerciais puros, os IRSs modernos também produzem parâmetros de navegação híbrida inercial/GPS totalmente integrados.

“Os produtos atuais Honeywell ADIRU e micro-IRU têm prontamente algum nível de resiliência à falsificação de GPS para suas saídas híbridas inerciais/GPS. A Honeywell realizou testes básicos de seu software híbrido inercial/GPS em relação aos padrões relevantes do setor. Os resultados desses testes indicam que os produtos de última geração da Honeywell podem manter a integridade da saída de posição horizontal híbrida, rejeitando uma mudança de posição GPS falsificada de 60 nm durante um tempo de exposição de 60 minutos. No entanto, nos casos em que as etapas de posição induzidas pela falsificação persistem por mais tempo do que o que pode ser atualmente detectado e mitigado, as saídas híbridas do IRS começarão a utilizar medições GPS falsificadas.”

As IRUs recentemente atualizadas, disse ele, “melhorarão ainda mais a resiliência dos parâmetros híbridos à falsificação de GPS com mudanças de posição muito baixas e durações prolongadas. Os novos algoritmos patenteados da Honeywell podem rejeitar mudanças de posição GPS falsificadas de 3 nm por mais de 60 minutos, o que constitui uma melhoria inovadora em comparação com o comportamento atual do IRS. O IRS também poderá indicar às tripulações de voo e aos sistemas da aeronave quando ocorrer falsificação de GPS.

“As próximas atualizações de produtos da Honeywell no período 2024/2025 permitirão [detecção de] falsificação, alertarão as equipes e continuarão fornecendo uma solução de posição híbrida GNSS/IRS de alta integridade, limitada por limites de proteção horizontais durante toda a duração do evento de falsificação. Assim que essas atualizações de produto estiverem disponíveis, a Honeywell, portanto, recomenda que os sistemas downstream, como o FMS ou os sistemas de vigilância, usem o GNSS/IRS híbrido do IRS como sua principal fonte de posição, pois será imune à falsificação de GPS, ao mesmo tempo que sendo mais preciso do que a posição inercial pura. Deve-se também prestar atenção aos efeitos na orientação da aeronave durante aproximações baseadas em GPS. Aqui, novamente, o IRS anunciará eventos de falsificação para tripulações de voo e sistemas de aeronaves, de modo que os recursos dependentes de GPS possam ser desativados automática ou manualmente.”

Aviônica Universal


Os FMS universais com o software mais recente não podem ser comprometidos por interferências ou falsificações do GNSS devido à forma como o FMS utiliza as informações de posição das estações DME. Esta tem sido uma característica dos FMSs universais, explicou Jason Mason, engenheiro sênior de integração de sistemas aviônicos. Na década de 1980, os engenheiros da Universal projetaram o FMS com sensores de navegação que passam por filtros de Kalman para fornecer a melhor posição calculada. Depois que a Força Aérea dos EUA desligou a disponibilidade seletiva do sistema GPS em 2000 e o GPS se tornou mais preciso para usuários civis, a Universal ponderou a filtragem de Kalman para GPS, mas demonstrou que a varredura ou triangulação DME com base na posição DME funcionava de maneira confiável quando os sinais GPS eram comprometidos. Em 1991, a Universal recebeu a aprovação de pedido padrão técnico da FAA para a capacidade de digitalização DME.

Mais recentemente, em resposta às preocupações dos clientes sobre interferências e falsificações, a Universal emitiu uma carta de serviço para explicar isso aos usuários e também deixou claro aos pilotos o que o FMS está fazendo. Isso foi incorporado ao software FMS 1002.6 e versões posteriores. Uma mensagem em banner, por exemplo, destaca que o GNSS não está funcionando e que o DME-DME está sendo usado, com a posição de navegação real também exibida e registrada para leitura pós-voo no aplicativo FlightReview da Universal. Isso também foi adicionado ao software de treinamento FMS para que os pilotos possam ver como a varredura DME protege contra interferências e falsificações.

“Os testes de voo determinaram quão bem podemos navegar com o DME-DME”, disse Mason. “Quando percebemos que poderíamos fazer isso, decidimos tornar isso mais evidente para a tripulação.”

O software 1002.6 está disponível em FMSs universais da série W (desde 2006), mas há um STC disponível para atualização de unidades mais antigas para a série W como um substituto imediato.

Collins Aeroespacial


A Collins Aerospace fabrica um receptor GNSS popular, o GLU 2100. As atualizações do GLU 2100 incluirão torná-lo atualizável em campo para modificações mais fáceis conforme os requisitos mudam. A empresa também está trabalhando no projeto de receptores GNSS que possam identificar sinais anormais e compensá-los ou notificar a tripulação de que a fonte de navegação é inválida, de acordo com Adam Evanschwartz, que lidera a estratégia de produtos da unidade de negócios de aviônicos da Collins Aerospace. Além disso, uma mitigação simples para o bloqueio de GNSS é construir receptores que possam usar múltiplas redes GNSS, caso uma delas esteja comprometida.

Tales


A Thales está ciente da ameaça da interferência GNSS e implementou um algoritmo dedicado para detectar a ocorrência de falsificação. “Se for detectada falsificação, dependendo do sistema de navegação da aeronave a bordo, a orientação da aeronave pode mudar automaticamente para fontes que não usam GPS para operações contínuas seguras”, disse a empresa à AIN . “Juntamente com os OEMs e a indústria de aviação global, a Thales está ativamente envolvida nas iniciativas para reforçar ainda mais a proteção das operações contra falsificação, adaptando tecnologias e algoritmos já comprovados em campo em plataformas militares.”

Uma tripulação da Bombardier Global Express voando perto de Bagdá perdeu o GPS e viu um deslocamento de posição de 60 nm, e os aviônicos foram direto para o cálculo morto. © Grupo de operações

Safran


A Safran já está fabricando o SkyNaute, um sistema de navegação inercial (INS) que atende aos novos padrões RTCA DO-384 usando sua tecnologia de giroscópio ressonador hemisférico compacto. “Combinando alto desempenho e integridade em todas as circunstâncias, o SkyNaute apresenta características físicas excepcionais em comparação com INS concorrentes com desempenho semelhante”, de acordo com Alexandre Lenoble, vice-presidente sênior de linhas de produtos de navegação e cronometragem da Safran Electronics & Defense.

“Existem duas maneiras pelas quais os INS Safran são capazes de detectar e mitigar interferências: os sensores inerciais são, em essência, completamente imunes ao bloqueio ou falsificação do GNSS. Como consequência, eles podem ser usados...para monitorar a exatidão dos sinais GNSS e da solução de navegação híbrida. Outra maneira de fazer isso é calcular algoritmos de detecção e mitigação de interferência diretamente nos sinais fornecidos pelo receptor GNSS, antes de combinar esses sinais com a parte inercial. Isso permite que o INS, uma vez detectado o evento de falsificação, mude para um modo de navegação inercial/desaceleração puro.

“Como fabricante de PNT, a Safran está acostumada a mesclar dados de sensores inerciais e GNSS para calcular uma solução de navegação híbrida ideal.”

Advanced Navigation


A Advanced Navigation está adotando uma abordagem diferente para criar sistemas de navegação inercial que podem mitigar os riscos de falsificação. “Não é mais uma possibilidade, mas sim uma certeza de que indústrias críticas, como a indústria da aviação, serão perturbadas pela proliferação da falsificação de GNSS”, disse a empresa antes da cimeira EASA/IATA. “Felizmente, aproveitar a tecnologia mais recente para combater as ameaças mais recentes é uma opção. Portanto, é fundamental que o sector privado permaneça na vanguarda para minimizar o impacto, avaliando e implementando rapidamente sistemas que possam acompanhar esta preocupação crescente.”

A empresa desenvolveu um INS com o que afirma ser “uma nova abordagem de filtragem baseada em um processamento proprietário de rede neural artificial”. O resultado são “capacidades de navegação extremamente precisas em cenários com GNSS negado, bem como o melhor monitoramento de integridade da categoria para detectar e mitigar GNSS falsos ou errôneos”.

Em geral, de acordo com a Advanced Navigation, as indústrias dependentes de PNT devem utilizar receptores de rede multi-GNSS e monitoramento de integridade autônomo de receptor avançado e incorporar INS mais recentes com monitoramento de integridade avançado, como INS baseado em rede neural artificial. Deverão também trabalhar com os reguladores para ajudar a acelerar a integração de novas tecnologias. “Agilizar os processos de certificação, sem comprometer os padrões de segurança, pode garantir que os equipamentos de aviação permaneçam na vanguarda da defesa contra o cenário de ameaças em constante evolução”, afirmou a empresa.

Dassault Aviation


O bloqueio e a falsificação de GNSS se tornaram um “tópico quente”, de acordo com o engenheiro de suporte piloto da Dassault, Mathias Paquier.

A forma como a Dassault configurou os aviônicos da Honeywell em seus jatos executivos equipados com EASy não é usar o recurso híbrido que usa GPS para atualizar a posição do IRS. “Isso não é exatamente o mesmo no Falcon em comparação com os concorrentes”, disse Paquier. “Isso significa, na prática, que nos Falcons, ao usar as entradas do IRS, essa entrada não pode ser afetada pela falsificação de GPS. Como não utilizamos [os insumos híbridos], o FMS não pode ser impactado.”

O FMS dos Falcons escolhe o sensor com a melhor incerteza de posição estimada (EPU), começando pelo GPS. Se isso estiver comprometido, o FMS analisa a posição do IRS e usa DME-DME ou VOR-DME.

É claro que estes últimos exigem que o avião esteja dentro do alcance das estações terrestres DME-DME ou VOR-DME utilizáveis. Mas, na pior das hipóteses, e se o IRS também falhar, o FMS pode continuar a navegação com base no cálculo morto.

Os pilotos do Falcon devem conhecer os sintomas de bloqueio do GPS, que incluem perda de visão sintética. “Este é provavelmente o mais fácil de detectar”, disse ele. “Está bem na frente dos pilotos.” O próximo sintoma seria uma mensagem CAS para falha na saída ADS-B, porque a saída ADS-B depende de GPS.

Os sintomas secundários incluem uma mensagem como “Incapaz RNP”, que indica que o EPU é muito grande para o desempenho de navegação exigido (RNP) na área onde o avião está voando. O EPU não é exibido permanentemente no PFD, mas pode ser visualizado na página “mostrar sensores”. O modo avançado do EGPWS também não estará disponível.

Finalmente, os passageiros provavelmente notarão que o satélite não funciona mais. “Este é um grande inconveniente para os passageiros”, observou ele. Após o término do bloqueio, a aeronave será reconfigurada e retornará ao normal.

“Quando falamos sobre falsificação, as coisas ficam mais difíceis”, disse Paquier.

Quando um cliente experimentou um spoofing na província de Hatay, na Turquia, o sistema de navegação mostrou o avião a 70 nm de distância de sua posição real. A hora UTC no display do piloto estava incorreta, o que é uma boa indicação de falsificação, e o FMS exibiu uma mensagem para “verificar a posição do IRS”.

Sem nenhuma mensagem CAS ou mensagem óbvia de falha, ele explicou: “Pode ser muito difícil para os pilotos perceberem o que está acontecendo”.

A Dassault emitiu um boletim aos operadores já em abril de 2022 e aconselha, ao voar em áreas com risco de falsificação, desmarcar GPS 1 e 2 na página dos sensores de navegação. Isso desmarca a entrada de GPS do FMS para que o FMS não use o GPS para atualizações de navegação. “Mesmo se você for falsificado, isso não terá impacto no FMS”, disse ele. “Depois de sair da área, você pode selecionar novamente a entrada do GPS.”

Caso os pilotos não tenham previsto a desmarcação do GPS antes que a falsificação aconteça, eles ainda devem desmarcar a entrada do GPS, disse ele. “Se a sua posição FMS foi corrompida e você desmarcar, ele reverterá para o modo IRS. Ele manterá sua última posição válida (neste caso, a falsificada) e será atualizada usando a entrada do IRS a partir daí. A recomendação é, portanto, realizar uma atualização da posição do FMS usando a posição bruta do IRS. O IRS bruto não pode ser afetado por falsificação porque não é afetado pelo GPS. A desvantagem é que a posição bruta do IRS é afetada pelo desvio do IRS, mas pelo menos você retornará a uma posição razoável, que será atualizada automaticamente usando DME-DME ou VOR-DME se estiver dentro do alcance. Se você estiver decolando de uma área de falsificação, você sempre pode desmarcar o GPS e atualizar o FMS após a partida do motor usando um ponto de referência ou posição lat/long [no solo].”

Paquier também aconselha os pilotos a saberem qual IRS é o mais preciso e, em seguida, escolher aquele como o principal. “Você pode verificar o desvio real de cada IRS na página de aviônicos. Se você sabe que o IRS 2 é sempre menor, nossa recomendação é que você tenha isso em mente ao atualizar a posição do FMS.”

Algumas operadoras (não apenas Falcons) relataram que o GPS não se recupera após um incidente de falsificação. Os pilotos devem estar preparados para navegar utilizando fontes não GPS. “Isso representa um desafio operacional”, disse ele, “se eles tiverem que voar de longa distância sem GPS. Requer mais preparação. Costumávamos voar assim há 20 anos, mas hoje não nos sentimos confortáveis ​​em voar sem GPS.”

Embora muitos países estejam a desativar ajudas à navegação terrestres, muitos especialistas recomendam que os países mantenham uma rede robusta de ajudas à navegação terrestres, tais como estações VOR e DME.

Há uma outra técnica não oficial que os pilotos podem considerar: emparelhar um receptor GPS portátil multi-rede com seus tablets. Alguns receptores podem usar GPS, Galileo e Glonass, e a falsificação pode afetar apenas um deles. Obviamente, os reguladores não permitem que os pilotos usem mapas móveis do EFB como fontes oficiais de navegação, mas o EFB poderia fornecer uma maneira fácil de confirmar um encontro de falsificação e também fornecer alguns conselhos de localização para complementar outras fontes. O uso de múltiplas constelações é, na verdade, uma das melhorias possíveis a médio prazo para os receptores GPS de aeronaves. Esta não é uma solução mágica, ressaltou ele, porque os bloqueadores provavelmente bloquearão todos os sinais GNSS.

Paquier, que participou na cimeira EASA/IATA, concluiu que soluções imediatas não estão prontamente disponíveis. “Todos estão trabalhando duro em mitigações de curto, médio e longo prazo. A EASA está levando isso muito a sério. É importante ter em mente que descobrimos todos os dias que cada combinação de aviônicos, sensores e aeronaves produz sintomas ligeiramente diferentes. E isso pode variar de um tipo para outro, mesmo dentro das [plataformas] Dassault. As informações que você terá de diferentes OEMs podem ser diferentes. A história ainda está se desenrolando.”

Gulfstream Aerospace


A Gulfstream Aerospace emitiu uma carta de operações de manutenção aos operadores de suas aeronaves, primeiro aconselhando os pilotos a planejarem voos em torno de áreas conhecidas onde ocorrem interferências ou falsificações. “Se for necessário voar através dessas áreas, considere a utilização de fontes de navegação terrestres.”

Os pilotos devem reportar quaisquer anomalias ao ATC, aconselhou a empresa. “Quando aplicável, as tripulações de voo devem solicitar vetores e/ou utilizar navegação terrestre. Os procedimentos do Manual de Voo do Avião (AFM) devem ser seguidos para quaisquer mensagens do Sistema de Alerta da Tripulação (CAS) e indicações de navegação degradada. Os procedimentos devem ser seguidos para quaisquer mensagens CAS e indicações de navegação degradada.”

Tendo auxiliado na produção da carta de informações de serviço da Honeywell de dezembro, a Gulfstream também está trabalhando com a Collins Aerospace para fornecer informações semelhantes aos operadores que voam em seus aviões equipados com aviônicos Collins.

Bombardier


De acordo com a Bombardier, a empresa “tem sido muito proativa com seus clientes sobre a realidade da falsificação de GPS.

“No final de dezembro de 2023, a Bombardier lançou um Advisory Wire para aprimorar a comunicação com todos os nossos clientes, somando-se aos FONs (Flight Operation Notifications) que publicamos no início daquele ano. Além disso, publicamos diversas atualizações em nossas comunicações aos clientes no ano passado para informar os clientes sobre o problema. Também trabalhamos em estreita colaboração com a FAA e vários operadores de frota para garantir que tenham as informações mais atualizadas.”

Satcom Direct


Em vez de adicionar novos equipamentos, a Satcom Direct oferece tecnologia de geolocalização para clientes que utilizam seus GeoServices FlightDeck Freedom. “Poucas situações são mais alarmantes para a tripulação do voo do que perceber que de repente são incapazes de determinar com precisão a posição da aeronave”, disse a empresa. “Quando o posicionamento das aeronaves não pode mais ser determinado corretamente, a separação no céu torna-se mais difícil de garantir e o risco de complicações políticas aumenta muito.”

GeoServices fornece alertas GeoNotification quando a aeronave de um cliente está se aproximando de uma região onde ocorreram ataques de falsificação, com base nas configurações do GeoFence no FlightDeck Freedom. “[Isso] fornece aos usuários um aviso prévio do perigo, permitindo-lhes alterar o curso e evitar possíveis interrupções em seus sistemas de navegação.”

A AIN está ciente de outros esforços que abordarão o bloqueio e a falsificação do GNSS e reportará sobre eles à medida que forem revelados. Um será anunciado na feira de aviônica da AEA em 19 de março e outro é um aplicativo de detecção de anomalias de GPS que foi lançado pelo desenvolvedor de aplicativos de planejamento de voo APG. Enquanto isso, o OpsGroup recomenda que os pilotos visualizem as áreas afetadas pela interferência do GPS no site gpsjam.org e “não voem contra nenhum hexágono vermelho ou amarelo!”

Com informações do site ainonline.com

segunda-feira, 4 de março de 2024

Avião “para as águas” vira opção de embarcação na Turquia; assista

Veículo é mais rápido que os barcos comuns e oferece viagens menos turbulentas.

(Imagem: Divulgação/ST Engineering)
Na Turquia, uma ideia interessante de avião está sendo implementada para voar sobre as águas, prometendo voos mais rápidos que os de embarcações tradicionais. Segundo os responsáveis, a alternativa é também mais sustentável e eficiente, tendo um aspecto especial para passeios turísticos.

O AirFish é um modelo Wing-in-Ground (WIG) – que na tradução direta significa “asas no chão”. Acontece que esse design usa como “chão” a água, não levantando muito da superfície quando está voando.

Esse avião é desenvolvido por uma subsidiária da ST Engineering, uma multinacional de tecnologia e engenharia de Cingapura voltada para o setor aeroespacial. No caso, o que está em jogo é um pedido de até 20 desses veículos feito pela Eurasia Mobility Solutions (uma empresa turca especializada em mobilidade urbana) para serem usados no segmento de turismo e transporte privado na Turquia.

Um avião para curtir as águas na Turquia



As primeiras entregas do avião que voa sobre as águas estão previstas para 2025. Esses veículos têm capacidade para 10 pessoas ou uma tonelada de carga, tendo velocidade máxima de 90 nós (ou 167 km/h). Na parte de propulsão, há um motor V8 de 500 cavalos abastecido com combustível normal sem chumbo.

Quando está voando, o avião fica entre 60 centímetros e 7 metros acima da água, inclusive em áreas de ondas. Aliás, esse detalhe de “asa com efeito solo” para voar baixo é essencial para mais conforto aos passageiros ao longo de um percurso.

Para os responsáveis no acordo, o objetivo é oferecer uma opção bem mais agradável para os turistas na Turquia e, futuramente, em outras regiões do planeta. Não foram compartilhados detalhes sobre valores envolvidos no negócio.

domingo, 3 de março de 2024

Como o Concorde conseguiu voar de forma supersônica?

Hoje marca um aniversário muito especial na história da aviação. Há 54 anos, hoje, em 2 de março de 1969, o icônico avião supersônico da Aérospatiale e BAC conhecido como 'Concorde' subiu aos céus pela primeira vez. Embora a aeronave fosse um símbolo de luxo que apenas os clientes e empresas mais ricos podiam pagar para viajar, seu design futurista e recursos supersônicos inspiraram fãs em todo o mundo. Vamos dar uma olhada no que exatamente o tornou capaz de um voo supersônico sustentado.

O Concorde é, sem dúvida, um dos aviões comerciais mais icônicos a enfeitar os céus do mundo
(Foto: Eduard Marmet via Wikimedia Commons)

Como surgiu o Concorde


O Concorde foi o produto de uma colaboração franco-britânica entre os fabricantes BAC e Aérospatiale. Suas origens remontam a mais de uma década antes de seu primeiro voo. A primeira reunião do comitê formado pelo engenheiro aeronáutico galês Sir Morien Bedford Morgan para estudar o conceito de transporte supersônico (SST) ocorreu em fevereiro de 1954. Ele entregou seus primeiros relatórios ao Arnold Hall do Royal Aircraft Establishment (RAE) um ano depois.

Enquanto isso, no final dos anos 1950, a Sud-Aviation da França estava planejando sua própria aeronave SST, conhecida como Super-Caravelle. Depois que ficou claro que esse projeto era semelhante ao conceito britânico, a parceria franco-britânica que produziu o Concorde foi formada no início dos anos 1960. No final da década, a aeronave fez seu primeiro voo de teste.

Competidores supersônicos


No entanto, quando o Concorde subiu aos céus em 2 de março de 1969, seu concorrente soviético, o Tupolev Tu-144, já o havia feito em dezembro anterior. Pensava-se que um projeto americano, o maior e mais rápido Boeing 2707, também proporcionaria concorrência no mercado supersônico. No entanto, a Boeing cancelou isso em 1971 antes que seus protótipos pudessem ser concluídos.

O Technik Museum Sinsheim na Alemanha é o lar de exemplos do
Concorde e do Tupolev Tu-144 (Foto: Jake Hardiman/Simple Flying)
Dos dois designs supersônicos que chegaram à produção, o Concorde teve uma carreira muito mais longa e bem-sucedida do que sua contraparte soviética. Depois que o primeiro protótipo do Concorde fez seu primeiro voo de teste saindo de Toulouse em março de 1969, o primeiro exemplar construído na Inglaterra saiu de Bristol um mês depois. No entanto, os voos de teste supersônicos não ocorreram até outubro daquele ano. Mas o que exatamente permitiu o Concorde voar tão rápido?

Design de asa


Quase tudo sobre a aparência do Concorde é visualmente impressionante e muito diferente dos aviões subsônicos de então e agora. Talvez um dos aspectos mais evidentes de seu design sejam as asas. Eles eram conhecidos como delta ogival, referindo-se à curva ogiva em sua borda de ataque que diferia dos designs de bordas retas em jatos de combate.

Foto de arquivo do primeiro voo do Concorde saindo de Toulouse, França,
em 2 de março de 1969 (Foto: André Cros via Wikimedia Commons)
A razão para a popularidade da asa delta entre as aeronaves militares é que seu projeto resulta em inúmeras vantagens que conduzem ao voo supersônico em alta altitude. Como tal, o Concorde fez uso deste projeto para lucrar de forma semelhante. Por exemplo, as asas eram mais finas do que nos designs contemporâneos de asa aberta, o que reduzia seu arrasto.

Além disso, as ondas de choque que o Concorde produziu ao voar em velocidades supersônicas resultaram em alta pressão abaixo das asas. Isso proporcionou elevação extra substancial sem aumentar o arrasto. Desta forma, chave não apenas em termos de velocidade, mas também em altitude. 

As impressionantes asas em forma de delta ogival do Concorde o distinguem instantaneamente dos aviões subsônicos contemporâneos (Foto: Jake Hardiman/Simple Flying)
A elevação adicional ajudou o Concorde a atingir alturas significativamente maiores do que os aviões subsônicos . Aqui, ele poderia lucrar com a resistência mínima do ar mais rarefeito para voar supersonicamente da maneira mais eficiente possível.

Tecnologia do motor


Os motores que foram encontrados abaixo das impressionantes asas ogivais delta do Concorde também foram cruciais para conceder ao Concorde suas lendárias habilidades supersônicas. A aeronave ostentava quatro turbojatos Rolls-Royce / Snecma Olympus 593 Mk610. Eles foram baseados nos motores Rolls-Royce Olympus encontrados nos bombardeiros estratégicos Avro Vulcan da RAF.

Os motores do Concorde foram derivados dos do bombardeiro estratégico Avro Vulcan, conforme visto no centro da fotografia (Foto: Jake Hardiman/Simple Flying)
Muito parecido com o Concorde, o Vulcan voava em grandes altitudes e exibia um design de asa delta. Seus motores, originalmente conhecidos como Bristol BE 10, foram os primeiros turbojatos de fluxo axial de dois carretéis do mundo. Os motores Olympus 593 do Concorde também apresentavam recursos de reaquecimento na forma de pós-combustores. Essa tecnologia proporcionou maior empuxo na decolagem e durante o voo supersônico.

Quando funcionando "a seco" (sem os pós-combustores), cada um dos quatro motores do Concorde produziu 31.000 lbf de empuxo. No entanto, com os pós-combustores ligados, também conhecidos como funcionamento 'molhado', isso aumentou mais de 20%, totalizando 38.050 lbf de empuxo por motor.

O Concorde era uma aeronave comparativamente leve, com um MTOW de 185 toneladas em comparação com 333 toneladas do Boeing 747-100. Como tal, sua tecnologia de motor fez uma grande diferença ao permitir que ele "supercruisse" a mais de duas vezes a velocidade do som. O Concorde normalmente navegaria a cerca de 2.158 km/h (1.165 nós), logo abaixo de sua velocidade máxima de Mach 2,04.

O Concorde foi proibido de voar supersônico sobre a terra devido à poluição sonora de seu estrondo sônico (Foto: Getty Images)

Tinta especial


Mesmo os detalhes aparentemente menores como a pintura usada no Concorde foram fatores-chave para melhorar seu desempenho. Especificamente, a tinta branca do Concorde era deliberadamente altamente reflexiva. Isso permitiu que ele desviasse parte do calor que surgiu durante o voo supersônico.

A capacidade de desviar esse calor foi crucial para evitar o superaquecimento e danos à sua estrutura de alumínio. Como tal, o Concorde foi capaz de navegar em velocidades supersônicas por longos períodos de tempo sem comprometer sua segurança ou integridade estrutural. Por esse motivo, um Concorde promocional azul com libré Pepsi só podia voar em supersônico por 20 minutos de cada vez.

O F-BTSD em sua pintura Pepsi de curta duração (Foto: Richard Vandervord via Wikimedia Commons)

Nariz ajustável


O nariz ajustável e inclinado do Concorde também foi um fator para melhorar seu desempenho, tanto em cruzeiro quanto em pouso. Como é evidente pelo perfil lateral acima, quando seu nariz estava apontando diretamente para longe da cabine, deu à aeronave um perfil frontal incrível e aerodinâmico com área de superfície mínima e, consequentemente, arrasto. Isso, por sua vez, facilitou velocidades mais altas.

No entanto, ao pousar, o Concorde tinha um ângulo de ataque muito alto . Se o nariz tivesse permanecido na configuração pontiaguda ao tocar o solo, seus pilotos teriam visibilidade mínima. O mesmo pode ser dito para as operações de táxi e decolagem. Como tal, seu nariz pode ser abaixado em um ângulo de 12,5 ° para melhorar a visibilidade antes do pouso. Isso foi reduzido para 5 ° no toque para evitar danos potenciais quando a roda do nariz atingiu o solo.

O Concorde pousou em Farnborough em 1974, com o nariz inclinado como
sua marca registrada (Foto: Steve Fitzgerald via Wikimedia Commons)

O fim de uma era


No geral, seis protótipos e 14 exemplos de produção do Concorde foram produzidos entre 1965 e 1979. O tipo entrou em serviço comercial em 21 de janeiro de 1976 e desfrutou de uma brilhante carreira de 27 anos. No entanto, infelizmente, todas as coisas boas têm um fim.

A queda do voo 4590 da Air France em Paris, em julho de 2000, afetou significativamente a reputação de segurança da aeronave. Então, no ano seguinte, os ataques de 11 de setembro geraram uma desaceleração em toda a indústria da aviação comercial. Esses fatores, juntamente com os crescentes custos de manutenção, tornaram o Concorde economicamente inviável para a British Airways e a Air France.

O Concorde fez seu último voo comercial em 24 de outubro de 2003. Isso pôs fim a uma era inspiradora de viagens aéreas supersônicas, como nunca foi vista desde então. A travessia transatlântica mais rápida do Concorde (Nova York-Londres) registrou a impressionante velocidade de duas horas, 52 minutos e 59 segundos. Será interessante ver se os designs supersônicos futuros serão capazes de igualar, ou mesmo superar, essa conquista incrível.

Via Simple Flying