Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens
Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens

terça-feira, 26 de março de 2024

Como funcionam as superfícies de controle de voo de aeronaves?

Apenas o simples fato de que uma aeronave pode decolar e permanecer no ar é um milagre da engenharia que geralmente consideramos garantido. Embora as partes fixas da fuselagem, asas e estabilizadores sejam essenciais, a verdadeira sutileza na manobra de um jato vem das partes dinâmicas anexadas a eles - as superfícies de controle de voo. Vamos dar uma olhada no que são e como funcionam.

Como funcionam as superfícies de controle dinâmico de uma aeronave? (Foto: Getty Images)

Superfícies primárias e secundárias


As superfícies de controle são todas as partes dinâmicas em uma aeronave que podem ser manipuladas para dirigir o avião durante o voo. Eles são divididos em superfícies de controle primárias e secundárias. Os principais em uma aeronave de asa fixa incluem os ailerons, elevadores e leme. Estes são responsáveis ​​por dirigir a aeronave.

Uma aeronave em voo pode girar em três dimensões - horizontal ou guinada, vertical ou inclinação e longitudinal ou roll. As superfícies de controle primárias produzem torque, que varia a distribuição da força aerodinâmica ao redor do avião.

As superfícies de controle secundárias incluem spoilers, flaps, slats e freios a ar. Isso modifica a aerodinâmica geral do avião, aumentando ou reduzindo a sustentação ou resistência gerada pelas asas.

Todas as superfícies atuam juntas para equilibrar as forças aerodinâmicas que impactam uma aeronave e para mover o avião em diferentes eixos em relação ao seu centro de gravidade.

Os elevadores


Os elevadores levantam e abaixam a aeronave, movendo o avião em seu eixo transversal, produzindo inclinação. A maioria das aeronaves possui dois elevadores. Eles são colocados na borda de fuga em cada metade do estabilizador horizontal fixo.

Os elevadores são montados nos estabilizadores horizontais fixos (Foto: Jake Hardiman/Simple Flying)
A entrada manual ou do piloto automático move os elevadores para cima ou para baixo conforme necessário por um movimento para frente ou para trás da coluna de controle ou da alavanca de controle. 

Se for movido para frente, o profundor desvia para baixo, o que gera um aumento na sustentação da superfície da cauda. Isso, por sua vez, faz com que o nariz do avião gire ao longo do eixo vertical e vire para baixo. O oposto é verdadeiro quando o painel de controle é puxado para trás.

O leme


O leme move a aeronave em seu eixo horizontal, produzindo guinada. Assenta no estabilizador vertical ou na barbatana caudal. Não é usado para dirigir a aeronave diretamente, como o próprio nome pode fazer crer. Em vez disso, é usado para neutralizar a guinada adversa produzida ao virar a aeronave ou para neutralizar uma falha de motor em quatro jatos.

O leme é articulado à barbatana de cauda fixa da aeronave (Foto: Getty Images)
Ele também é usado para 'escorregar' e direcionar a trajetória do avião antes de pousar durante uma aproximação com forte vento cruzado. O leme é geralmente controlado pelos pedais esquerdo e direito do leme na cabine.

Os ailerons


Os ailerons, que em francês significa 'asas pequenas', são usados ​​para inclinar o avião de um lado para o outro, movendo-o ao longo de seu eixo longitudinal, produzindo roll. Eles são fixados nas bordas externas das asas da aeronave e se movem em direções opostas uma da outra para ajustar a posição do avião.

Os ailerons estão localizados nas bordas externas das asas da aeronave e funcionam
em oposição um ao outro (Foto: Jake Hardiman/Simple Flying)
Quando o dispositivo de controle da cabine de comando é movido ou girado, um aileron desvia para cima e o outro para baixo. Isso faz com que uma asa gere mais sustentação do que a outra, o que faz o avião rolar e facilita uma curva na trajetória de vôo, ou o que é conhecido como 'curva inclinada'. A aeronave continuará a girar até que um movimento oposto retorne o plano ao longo do eixo longitudinal.

Flaps


Os flaps lembram os ailerons, mas ficam mais próximos da fuselagem. Eles mudam o formato da asa da aeronave e são utilizados para gerar mais sustentação e aumentar o arrasto, dependendo de seu ângulo. Sua configuração é geralmente entre cinco e quinze graus, dependendo da aeronave.

Os flaps são usados ​​para alterar a forma da asa para manipular o arrasto ou a sustentação (Foto: Getty Images)
Os flaps da borda final se estendem e se movem para baixo na parte de trás da asa. Os flaps de ponta se movem para fora e para frente na frente da asa. No entanto, as abas da borda dianteira e as venezianas não são controladas individualmente, mas respondem ao movimento das abas da borda traseira.

Slats e slots


As ripas de ponta se estendem da superfície da frente da asa usando pressão hidráulica. Ao todo, eles podem alterar a forma e o tamanho da asa de maneira bastante significativa. Isso permite que os pilotos adaptem a quantidade de arrasto e sustentação necessária para os procedimentos de decolagem e pouso.

Os espaços entre os flaps são chamados de ranhuras, que permitem mais fluxo de ar
para o topo da superfície extra da asa (Foto: Getty Images)
Os slots são aberturas entre os diferentes segmentos das abas. Eles são recursos aerodinâmicos que permitem que o ar flua de debaixo da asa para sua superfície superior. Quanto maior a superfície dos flaps da borda de fuga implantados, mais slots são necessários.

Spoilers e freios a ar


Spoilers e freios a ar são usados ​​para reduzir a sustentação e desacelerar a aeronave. Eles são usados ​​na aproximação e após o pouso. Spoilers são pequenos painéis articulados na superfície superior da asa e diminuem a sustentação interrompendo o fluxo de ar.

Spoilers são usados ​​para interromper o fluxo de ar sobre a asa, aumentando o arrasto
(Foto: Olga Ernst via Wikimedia Commons)
Embora os spoilers possam atuar como freios, os freios a ar adequados se estendem da superfície para a corrente de ar para reduzir a velocidade da aeronave. Na maioria das vezes, eles são implantados simetricamente em cada lado.

Circuito hidráulico


As aeronaves a jato contam com sistemas hidráulicos para manipular as superfícies de controle. Um circuito mecânico liga o controle da cabine ao circuito hidráulico que controla as superfícies dinâmicas do avião. Isso tem bombas hidráulicas, reservatórios, filtros, tubos, válvulas e atuadores. Esse sistema significa que a forma como uma aeronave responde é determinada pela economia, e não pela força física do piloto.

Por Jorge Tadeu com informações da Simple Flying

5 fatos surpreendentes sobre o capacete usado pelos pilotos do F-35 Lightning II

O capacete piloto Lockheed Martin F-35 Lightning II apresenta uma tecnologia incrível.

Um caça a jato USMC Lockheed Martin F-35 Lightning (Foto: Michael Fitzsimmons)
Não há dúvida de que o Lockheed Martin F-35 Lightning II é uma maravilha tecnológica, com o caça a jato sendo equipado com diversas tecnologias para aumentar sua superioridade no ar. O caça de quinta geração, que se juntou ao Lockheed Martin F-22 como o caça mais avançado no ar, derrotou o Boeing X-32 e entrou em serviço em julho de 2015.

A aeronave também está equipada com um capacete de última geração, que ajuda seus pilotos a navegar e monitorar o ambiente enquanto voam em diversas missões, uma vez que a aeronave foi entregue a diversas filiais de serviço nos Estados Unidos. Como tal, aqui estão alguns recursos interessantes do capacete do F-35.

1. Visor montado no capacete


Capacete Piloto F-35 com Display (Foto: Lockheed Martin)
Fornecido por duas empresas (Parceiros da joint venture RCEVS): Elbit Sistemas e Rockwell Collins

De acordo com a Elbit Systems , o Helmet Mounted Display (HMD) do Lockheed Martin F-35 Lightning II é construído e fornecido aos operadores do F-35 pela RCEVS, uma joint venture entre a Elbit Systems e a Rockwell Collins. O display fornece informações críticas de voo ao piloto durante toda a sua missão no ar.

O HMD também permite direcionamento e sinalização fora do eixo extremos, que estavam presentes nos sistemas antecessores, como o Joint Helmet Mounted Cueing System (JHMCS) ou o Display and Sight Helmet System (DASH). Por último, o HMD fornece imagens, seja de dia ou de noite, e combinado com simbologia de precisão, dá ao piloto uma consciência situacional sem precedentes enquanto pilota o Lockheed Martin F-35 Lightning II. O HMD também possui um heads-up display virtual (HUD), tornando o F-35 o primeiro caça a voar sem HUD.

2. Personalização e Conforto


Montagem de um capacete F-35 (Foto: Aviadora Sênior Erica Webster/USAF)
Ajuste personalizado concluído em: dois dias

Inspeções adicionais: A cada 105 dias / Verificação de ajuste de 120 dias

Em agosto de 2021, a 419ª Ala de Caça, baseada na Base Aérea de Hill (HIF) em Utah, Estados Unidos, descreveu como os capacetes são ajustados a cada piloto. De acordo com a ala de caça, cada piloto passa por um processo de dois dias para personalizar o capacete, sendo feitas medidas da cabeça antes da montagem do capacete.

Depois de montados, a distância entre as pupilas do piloto é medida com um pupilômetro, garantindo que os pilotos vejam uma única imagem no HMD, que exibe informações de missão crítica e uma visão de 360 ​​graus do ambiente ao redor da aeronave.

De acordo com William Vass, sargento técnico do 419º Esquadrão de Apoio a Operações, um piloto pode olhar para baixo, para uma parte de sua asa e o que está abaixo dele. Vass acrescentou que para onde quer que os pilotos olhem, as câmeras embutidas na fuselagem da aeronave projetam uma imagem no HMD.

3. Visibilidade de 360 ​​graus


Capacete de piloto de F-35 (Foto: Aviadora Sênior Erica Webster/USAF)
Habilitado por seis câmeras externas

O Sistema de Abertura Distribuída (DAS) fornece: Detecção e rastreamento de mísseis; Detecção de ponto de lançamento; Suporte de armas e Navegação diurna/noturna

De acordo com o Joint Program Office (JPO) do F-35 Lightning II, os pilotos recebem um campo de visão de 360 ​​graus usando o Distributed Aperture System (DAS). O escritório também destacou que é o único sistema esférico de consciência situacional de 360 ​​graus.

Os exemplos incluem alertar os pilotos sobre aeronaves e mísseis que se aproximam, fornecendo aos pilotos visão diurna/noturna, capacidade de controle de fogo e rastreamento preciso de alas ou aeronaves amigas para aumentar as manobras táticas. Oficialmente, o sistema é conhecido como AN/AAQ-37. Composto por seis sensores, o DAS faz parte do Sistema de Abertura Eletro-Óptica Distribuída (EODAS), que permite aos pilotos ver tudo ao seu redor enquanto voam no F-35.

Segundo a Raytheon, o HMD traz dados do EODAS, que atua em tempo real, enviando para o capacete imagens de alta resolução a partir das seis câmeras montadas ao redor da aeronave.

4. Capacidades de visão noturna


(Foto: Aviadora Sênior Erica Webster/USAF)
Habilitado pelo HMDS

Recursos de visão noturna: Capacidade integrada no capacete e no HMDS; Sensor digital de visão noturna e Projetado na viseira

A RCEVS afirmou que o HMDS F-35 Gen III fornece aos pilotos uma solução diurna e noturna totalmente integrada por meio de recursos avançados. Especificamente para missões noturnas, o HMDS projeta uma visão externa diretamente no visor, o que elimina a necessidade de óculos de visão noturna separados, simplificando os processos a bordo do caça.

Quando a Lockheed Martin selecionou a BAE Systems para fornecer o sistema Night Vision Goggle Helmet Mounted Display (NVG HMD) para o F-35, a última empresa disse que os NVGs eram destacáveis. Além disso, o sistema também integraria um sistema óptico de rastreamento de cabeça para entrega de armas de precisão, transporte e operações terrestres durante o voo do F-35.

5. Sistemas Integrados


Lockheed Martin F-35 Lightning II em um porta-aviões (Foto: Lockheed Martin)
O capacete F-35 possui seis características principais: Visor binocular; Consciência situacional; Visão noturna digital integrada; Ajuste leve e personalizado; Sistema de mira de armas e Ajuste com o DAS

Falando sobre o capacete em si, a Raytheon descreveu seus seis principais recursos e benefícios, incluindo uma tela binocular, consciência situacional aprimorada, visão noturna digital integrada, ajuste leve e personalizado com um centro de gravidade otimizado para maximizar o conforto, mira de armas olhando e designando alvos. e integração com DAS.

“No ambiente de combate acelerado, cada segundo conta. Os pilotos precisam das melhores informações disponíveis para tomar decisões num instante. O sistema de exibição montado no capacete (HMDS) Collins Aerospace F-35 Joint Strike Fighter (JSF) fornece a consciência situacional mais capaz com acesso intuitivo a informações táticas, de voo e de sensores.

A empresa destacou que continuará atualizando os capacetes, incluindo um recurso de diodo orgânico emissor de luz (OLED) disponível nos capacetes desde 2022. Olhando para o futuro, a Raytheon prometeu que, com as tecnologias emergentes, o HMDS estava preparado para incorporar facilmente as inovações mais recentes.

Com informações do Simple Flying

Como o drone voa? Entenda equilíbrio de forças que o mantém parado no ar


Para quem cresceu achando carrinhos de controle remoto algo supermaneiro, ver um drone em ação é quase uma experiência mágica. Seja pela suavidade com a qual ele se move ou a infinidade de aplicações —que vão desde a diversão até usos logísticos—, esses aparelhos despertam a curiosidade de muita gente. 

E aí fica dúvida: como eles funcionam? E como eles podem ser controlados por longas distâncias sem perder a estabilidade no ar? Aqui, consideramos os drones de uso civil, que se dividem em quatro categorias básicas de acordo com o número de rotores: tricópteros, quadricópteros, hexacópteros e octacópteros.


Para a explicação abaixo, usaremos os quadricópteros como referência, que são os tipos mais comuns à venda. Eles contam com quatro rotores (chamados popularmente de hélices). 

O princípio básico de funcionamento de um drone envolve equilíbrio. Enquanto dois desses rotores giram no sentido horário, outros dois giram no sentido anti-horário. Desta forma, há uma compensação de forças que evita que o drone gire descontroladamente ao redor do seu eixo vertical.

É preciso uma condição para levantar voo: a força de empuxo gerada pelos rotores ao empurrarem o ar para baixo e, por consequência, serem empurrados para cima. Essa força precisa ser maior do que a da gravidade.

Uma vez no ar, o aparelho se mantém em parado enquanto o empuxo gerado se mantiver em equilíbrio com a gravidade. Os movimentos também são controlados pela velocidade dos rotores. Para ir para frente, por exemplo, os rotores da traseira aumentam sua velocidade, enquanto os da frente diminuem, inclinando levemente o aparelho para que ele se movimente.

Situação similar ocorre quando comandamos o drone para trás, para os lados ou para que ele gire ao redor de seu eixo vertical. 

Além dos rotores —movimentados por motores elétricos— os drones contam com outros sistemas básicos. É preciso ter uma bateria, geralmente de íons de lítio (do mesmo material das dos smartphones) e sensores como altímetros e acelerômetros. Eles medem variáveis como altitude e velocidade e também colhem informações enviadas aos circuitos de controle no corpo do drone. 

Há também tem um receptor de rádio que permite a integração entre o controle remoto do usuário e as ações do veículo.


Como os drones se mantém equilibrados mesmo quando há vento?

Aqui, o mérito é dos circuitos de controle. Ao receberem dados dos sensores presentes no corpo do drone, esses circuitos conseguem ter uma "visão" da situação e mudar a rotação dos rotores para compensar a ação de forças externas. 

Qual é a velocidade máxima de um drone?

Isso, claro, varia de acordo com o tipo de drone. Modelos "de brinquedo" podem voar a cerca de 20 km/h, enquanto variações para uso profissional podem passar dos 60 km/h. Há ainda drones de competição, com recorde de velocidade, segundo o Livro Guinness dos Recordes, de 263,12 km/h, alcançado em 2017. 

Drones podem sofrer interferência?

Como os drones usam ondas de rádio para se comunicar com o controle em terra, eles estão sujeitos sim a interferências de origem eletromagnética. Elas podem partir de outros equipamentos que operam em frequência parecida ou de estruturas como linhas de alta tensão. As interferências podem dificultar o controle do drone e até interromper a comunicação por completo.

Via Tilt/UOL - Fontes: Fábio Raia, professor de engenharia elétrica e engenharia mecânica da Universidade Presbiteriana Mackenzie; Murilo Zanini de Carvalho, professor de engenharia da computação do Instituto Mauá de Tecnologia.

segunda-feira, 25 de março de 2024

Os engenheiros de voo antes essenciais à aviação que hoje só voam em aviões raros

Engenheiro Fabio Brito diante dos equipamentos que opera no 727; ele está na aviação há 34 anos
O Airbus 350 XWB, aeronave de última geração entregue a partir de 2019 na Europa, é o primeiro da aviação comercial equipado com telas sensíveis ao toque na cabine de comando. São dezenas de indicadores digitais coloridos que se movimentam à medida que atualizam dados sobre tráfego aéreo, condições de pressão, inclinação, vento, combustível. Um contraste e tanto com o Boeing 727, avião comercial mais antigo em operação no Brasil.

Lançado em 1963, nos Estados Unidos, o 727 conta com um painel preenchido com reloginhos, medidores, luzes de avisos, botões, manetes e outras traquitanas analógicas.

Diferentemente do modelo europeu, cujos sistemas funcionam de forma automática, no 727 tudo depende do conhecimento e das habilidades dos pilotos. E ainda: de profissionais raros, mas que ainda estão na ativa, como o carioca Fábio Oliveira de Brito.

A cada voo, Brito veste uma camisa branca com duas faixas bordadas no ombro. O emblema o designa engenheiro de voo - flight engineer ou mecânico de voo, no jargão dos aeronautas. O engenheiro de voo é o terceiro membro da cabine de pilotagem (cockpit) do 727.

Sua função é manejar a casa de máquinas aérea, monitorando sistemas e municiando o comandante com dados sobre a situação do avião e do ambiente. A rigor, é como se fosse um assistente de voz. Só que de carne e osso.

"A leitura dos parâmetros de voo é praticamente centralizada em mim, enquanto os que estão na frente mantêm o foco na pilotagem do avião", diz Brito, de 51 anos - 34 deles dedicados à aviação.

A origem do engenheiro de voo


727 que virou cargueiro da Total; modelos dependem de oito engenheiros de voo
O ofício remonta à década de 1930, quando as grandes aeronaves comerciais e de guerra podiam receber até cinco pessoas na cabine. Além dos dois pilotos e do engenheiro, também havia o navegador e o operador de rádio. Esses foram dispensados nos anos 1960, à medida que as aeronaves evoluíram de forma técnica.

Os engenheiros de voo começaram a perder espaço duas décadas depois, quando os computadores de bordo diminuíram a dependência humana do controle dos sistemas.

Atualmente, a função está relegada a antigos aviões e alguns modelos militares. No Brasil, quase não há aeronaves comerciais que a exijam. A exceção são os três cargueiros 727 da Total Linhas Aéreas, com sede em Belo Horizonte, para a qual Brito trabalha. A companhia tem oito engenheiros de voo no quadro de funcionários, com salário em torno de R$ 14 mil por mês.

Antes de cada viagem, o engenheiro de voo analisa os documentos da jornada anterior do avião. Depois, ele checa a parte externa - pneus, fuselagem e outros compartimentos -, à procura de eventuais avarias ou vazamentos.

Se uma intervenção é necessária, os mecânicos em terra são acionados. Do contrário, o engenheiro de voo assume sua posição no cockpit (cabine de comando).

Ele se posiciona em um assento logo atrás do comandante e do copiloto, virado 90 graus à direita, de frente para um painel. Então confere se o plano de viagem está de acordo com o peso e o balanceamento do avião. Por fim, verifica cada sistema - elétrico, hidráulico, combustível, pressurização, etapa realizada com movimentos curtos, rápidos e decididos.

Caso tudo esteja ok, a decolagem é autorizada. O profissional continuará vigilante até o avião aterrissar e descarregar a carga.

Atrás do copiloto, o complexo painel operado pelo engenheiro de voo Fabio Brito

Trabalhando em um clássico


Depois de terminar o ensino médio, Fábio Oliveira de Brito fez um curso técnico para mecânico de avião. Formou-se aos 17 anos e trabalhou para empresas como Varig e TAM (atual Latam). Em 1997, foi contratado pela Total. Integrou a equipe de mecânicos em solo por quase dez anos.

Em 2007, a empresa expandiu a frota e adquiriu três Boeing 727 dos anos 1970 e 1980. Originalmente destinadas à viagem de passageiros, as aeronaves foram convertidas em cargueiros.

Quando as aeronaves aterrissaram na Total, foi necessária a criação de uma equipe de engenheiros de voo. Brito estava entre os convocados. Durante um ano, fez cursos e habilitações. Ampliou o conhecimento técnico não só sobre o 727, como também sobre meteorologia e tráfego aéreo.

Morando no Rio de Janeiro, Brito acabou designado para a base de Guarulhos (SP), principal centro de distribuição aérea dos Correios - um importante cliente da Total Linhas Aéreas. A escala de Brito costuma incluir quatro voos por semana.

O engenheiro diz que voar a bordo do 727 é um privilégio. "O 727 é um avião histórico, admirado como o Cadillac. O pessoal da aviação fica encantado quando vê", afirma.

Além da configuração incomum para três tripulantes na cabine, o 727 possui barulhentos motores Pratt & Whitney JT8D. São três, instalados na icónica traseira, sob uma cauda alta em forma de T.

O trijato tem 46,7 metros de comprimento e pode transportar até 25 toneladas por cerca de 3 mil quilômetros. Trata-se de uma performance melhor se comparada ao 737 cargueiro - embora o antecessor gaste mais combustível.

Antigamente, o 727 era um avião bastante comum. No Brasil, voou por empresas como Varig, Vasp e Transbrasil. Hoje, no entanto, é objeto raro. Procurada pela BBC News Brasil, a Boeing não soube especificar quantas das 1.832 unidades fabricadas entre as décadas de 1960 e 1980 ainda permanecem em serviço.

Especialistas do setor estimam que haja pelo menos 30 em operação, a maioria cargueiros em empresas como a uruguaia Air Class Líneas Aéreas, a colombiana Aerosucre e a Safe Air, do Quênia.

"Continuar voando mesmo quase 60 anos depois de seu lançamento mostra que o 727 foi uma ideia muito bem desenvolvida e projetada, um acerto da fabricante", opina Cláudio Scherer, um ex-piloto da aeronave que hoje atua como instrutor no simulador de voo do curso de Ciências Aeronáuticas da PUCRS.

Cláudio Scherer diante do 727 que costumava pilotar: "Continuar voando mesmo quase 60 anos depois de seu lançamento mostra que o 727 foi uma ideia muito bem desenvolvida e projetada", diz

Futuro incerto


É difícil saber quando o último 727 deixará os aeroportos brasileiros para voar no imaginário dos saudosistas. Até porque, no ano passado, uma nova empresa brasileira anunciou o investimento em um cargueiro do modelo. Além da operação de cargas, a Asas Linhas Aéreas - com sede em São José dos Campos (SP) - pretende buscar um segundo 727 para realizar fretamentos de passageiros (voos charter). As aeronaves não estavam em operação até a publicação desta reportagem.

Já a Total diz que não há prazo para aposentar os três 727. "A aeronave atende aos nossos requisitos de rotas e tem boa despachabilidade", informou a empresa por e-mail. A boa forma se deve à manutenção constante e ao tempo médio de voo dos cargueiros - apenas três a quatro horas diárias, sempre à noite.

Apesar de esticar a vida útil do trimotor, a Total está de olho em outros cargueiros. Adicionou recentemente à malha um Boeing 737, modelo que dispensa o mecânico de voo. A cabine, mais moderna, é configurada apenas para piloto e copiloto.

No passado, as companhias aéreas chegaram a criar programas para transformar o cargo de engenheiro de voo em copiloto. Embora isso não esteja nos planos, a Total reconhece que pode adotar ação semelhante.

Mas Brito tem outros projetos. "Decidi não me arriscar na aviação moderna, nem esperar pela retirada do 727", diz. Ele pretende obter a aposentadoria ainda em 2022.

Via Leonardo Pujol (BBC News Brasil) - Fotos: Reprodução

Aço no céu: afinal, aviões mais 'duros' evitariam mortes em acidentes?

Foto de arquivo mostra um boeing 737 MAX da American Airlines pousando no
aeroporto de La Guardia, em Nova York (Imagem: Shannon Stapleton/Reuters)
Na última segunda-feira (21), um avião Boeing 737-800 sofreu um acidente no sul da China, deixando todos os seus ocupantes mortos. A situação levantou uma dúvida: será que se as aeronaves fossem construídas com materiais mais resistentes, haveria a chance de haver sobreviventes?

Primeiramente, é importante ressaltar que as características do acidente no qual a aeronave da China Eastern Airlines se envolveu foram atípicas e, particularmente extremas, com o avião despencando praticamente na vertical em direção ao solo. Não se tratou, portanto, de um pouso emergencial ou forçado que deu errado ou algo do tipo: a situação em questão, por si só, já praticamente zera a chance de alguém sobreviver.

De qualquer maneira, segundo especialistas consultados por Tilt, as técnicas atuais de construção de aeronaves já tornam elas seguras e resistentes.

"Os materiais mais usados na construção de estrutura e fuselagem de aeronaves comerciais, como o Boeing 737, são perfis e chapas de diferentes ligas de alumínio, por vezes chamadas de 'alumínio aeronáutico'", explica Rodrigo Magnabosco, professor do departamento de engenharia de materiais do Centro Universitário FEI.

Ele acrescenta que, em alguns casos, também se usam materiais compósitos, sendo que os de matriz polimérica (como epóxi e PEEK ou PPS, nos projetos mais modernos) são reforçados com fibras de carbono, o que contribui para essa resistência.

Materiais do tipo atendem às principais exigências para a construção de uma aeronave: proporcionar uma estrutura rígida e resistente que mantenha a forma no ar e suporte os esforços decorrentes do voo ao mesmo tempo que seja leve.

"Alumínio é um material extremamente leve e resistente. Quanto mais leve, melhor para a aviação. O custo acaba sendo secundário neste ponto, tanto que alguns aviões usam até titânio, que é um material muito resistente a altas temperaturas e bem mais caro do que o alumínio", acrescenta Lito Sousa, especialista em segurança da aviação, ex-mecânico de aeronaves e responsável pelo canal Aviões e Músicas no YouTube.

E se os aviões fossem mais "duros"?


É incorreto pensar que se os aviões fossem feitos de materiais mais "duros", como o aço, as consequências de acidentes aéreos seriam menores. Adotar tais materiais acarretaria em aeronaves mais pesadas e com capacidade de voo comprometida.

"Como são construídos hoje, os aviões são até melhores em amortecer impactos do que veículos", diz Sousa. Outro ponto a ser considerado é que, mesmo se os aviões ficassem intactos após acidentes, isso não significaria que seus ocupantes sairiam ilesos.

O motivo para tal é que o maior problema em situações do tipo é a desaceleração súbita, que causa danos consideráveis — e potencialmente fatais — aos órgãos do corpo.

Mesmo em situações como um pouso forçado, uma suposta resistência adicional não evitaria que a desaceleração súbita fosse o maior fator de risco para os ocupantes. Aqui, é importante diferenciar pouso de emergência de pouso forçado.

"O termo pouso de emergência significa que o piloto está solicitando uma prioridade para o pouso, não que o avião, necessariamente, tenha um problema técnico urgente", explica Sousa.

O que ocorre nesses casos é que o avião acaba "furando a fila" de prioridade dos aeroportos para pouso. É uma situação que pode ocorrer por diversos motivos, como um passageiro passando mal ou problemas técnicos. E, mesmo no caso de problemas técnicos, nem sempre há necessidade de um pouso imediato.

"Um exemplo é quando, durante a decolagem, o avião perde algum motor devido à ingestão de um pássaro. Neste caso, especialmente quando os voos são mais longos, o procedimento mais comum é o avião ficar voando ao redor do aeroporto por meia hora ou 45 minutos para fazer o alijamento de combustível [ato de se liberar no ar combustível dos tanques], diminuir seu peso e conseguir pousar com segurança", aponta Sousa.

Ele complementa dizendo que situações do tipo são relativamente comuns e ocorrem de quatro a cinco vezes por dia em todo o mundo.

Já um pouso forçado também é uma situação de emergência, só que envolve contextos mais críticos, como problemas no trem de pouso, danos mais severos no avião e aterrissagem em superfícies inadequadas, como na água.

E, mesmo em casos assim, o uso de materiais mais resistentes em nada influenciaria, segundo os entrevistados. Da mesma forma, a percepção de que aviões de pequeno porte tendem a resistir melhor a esse tipo de situação acaba sendo errada.

"Tantos aviões comerciais quanto os de pequeno porte têm projetos similares de engenharia para pousarem de barriga e há uma série de procedimentos que os pilotos realizam nessas situações. Além disso, não há qualquer estudo estatístico que aponte que o porte da aeronave influencia no resultado dessas ocorrências", conclui Sousa.

Via Rodrigo Lara (Tilt/UOL)

Boom Supersonic completa primeiro voo com demonstrador XB-1

Protótipo Boom Supersonic XB-1 faz primeiro voo. Continue lendo para ver o que o XB-1 está testando e algumas reflexões do CEO Blake Scholl sobre o futuro do Boom.

Boom Supersonic XB-1 (Foto: Boom Aeroespacial)
É oficial: a primeira aeronave da Boom Supersonic, o XB-1, fez seu primeiro vôo hoje – 22 de março de 2024. Para a Boom Supersonic, o XB-1 é um veículo de teste para a construção do Overture, o primeiro avião supersônico desde o Concorde.

O primeiro voo atende a objetivos modestos


De acordo com a Boom Supersonic , o XB-1, que carrega o registro N990XB, cumpriu “todos os seus objetivos de teste” em seu primeiro voo. Este teste inicial viu a aeronave apenas 7.120 pés acima do nível do mar e voar a uma velocidade máxima de 238 nós (274 mph) – longe de Mach 1, a velocidade do som. O primeiro voo do XB-1 ocorreu no Mojave Air & Space Port, na Califórnia, no mesmo espaço aéreo onde o X-1 quebrou a barreira do som, o X-15 realizou voos de teste para recordes de altitude e velocidade, e o SR- 71 Blackbird também foi testado.

(Foto: Boom Aeroespacial)
O XB-1 foi pilotado pelo piloto de testes chefe da Boom, Bill “Doc” Shoemaker, enquanto o piloto de testes Tristan “Geppetto” Brandenburg voou a aeronave de perseguição T-38 que monitorou o primeiro vôo. Shoemaker é um ex-piloto da Marinha dos EUA e compartilhou esta conquista histórica,

“Todos na equipe XB-1 deveriam estar extremamente orgulhosos desta conquista. Foi um privilégio compartilhar essa jornada com tantos profissionais dedicados e talentosos. A experiência que adquirimos ao atingir este marco será inestimável para o renascimento das viagens supersônicas no Boom.”


O CEO da Boom, Blake Scholl, acrescentou: “Hoje, o XB-1 voou no mesmo espaço aéreo sagrado onde o Bell X-1 quebrou pela primeira vez a barreira do som em 1947. Estou ansioso por este voo desde a fundação da Boom em 2014, e ele marca o marco mais significativo até agora. em nosso caminho para levar viagens supersônicas a passageiros em todo o mundo.”

Mas para Scholl, o XB-1 é mais do que apenas compartilhar o mesmo espaço aéreo histórico que o X-1, X-15 e SR-71.

Em uma prévia exclusiva do primeiro voo, Boom gentilmente disponibilizou o CEO Blake Scholl para o Simple Flying. Ele compartilhou: “A maneira como penso no XB-1 é, imagine, imagine o que estaríamos fazendo se não o fizéssemos. Temos uma empresa totalmente nova. E a primeira coisa que vamos construir como um avião supersônico parte 25, crítico para a segurança, de 400.000 libras... Eu me considero muito otimista, mas acho que nem eu acredito que isso funcionaria. E então construímos este avião para aprender, para descobrir o que não sabíamos, para descobrir o que é realmente necessário para construir um avião supersônico civil, que seja seguro o suficiente para ser pilotado por um ser humano.”

Scholl explicou que o XB-1 não se destina apenas a ajudar a Boom Supersonic a aprender como construir aeronaves supersônicas como o primeiro novo fabricante de aviões comerciais dos Estados Unidos desde a década de 1920, mas também,

Lições técnicas são aprendidas sobre como projetar e otimizar um jato supersônico, da aerodinâmica à propulsão e à integração de sistemas.

O que o XB-1 irá testar


(Foto: Boom Aeroespacial)
Segundo Boom, o XB-1 estará testando, entre outras coisas:
  • Sistema de visão de realidade aumentada: Duas câmeras montadas no nariz, aumentadas digitalmente com indicações de atitude e trajetória de vôo, alimentam um display do piloto de alta resolução, permitindo excelente visibilidade da pista. Este sistema permite melhorar a eficiência aerodinâmica sem o peso e a complexidade de um nariz móvel.
  • Aerodinâmica otimizada digitalmente: Os engenheiros usaram simulações computacionais de dinâmica de fluidos para explorar milhares de projetos para o XB-1. O resultado é um design otimizado que combina operação segura e estável na decolagem e pouso com eficiência em velocidades supersônicas.
  • Compostos de fibra de carbono: O XB-1 é quase inteiramente feito de materiais compósitos de fibra de carbono, permitindo-lhe realizar um design aerodinâmico sofisticado em uma estrutura forte e leve.
  • Entradas supersônicas: as entradas do motor do XB-1 reduzem a velocidade do ar supersônico para velocidades subsônicas, convertendo eficientemente a energia cinética em energia de pressão e permitindo que os motores a jato convencionais alimentem o XB-1 desde a decolagem até o voo supersônico.
Outra coisa que está sendo testada pelo XB-1 é a construção de uma cultura de segurança.

Objetivos finais além do XB-1


Scholl também compartilhou com Simple Flying que Boom Supersonic tem objetivos além de construir a Abertura . Embora a Overture já tenha 130 pedidos e pré-encomendas de empresas como American Airlines, United Airlines e outras, já existem planos para uma Overture Two em andamento.

Uma renderização do Boom Overture (Imagem: Boom Supersonic)
A Boom quer construir uma abertura maior . Por que? Como Blake Scholl compartilhou: “A conexão humana pessoalmente à distância é importante. Para permitir muito mais disso, podemos voar para lá de forma mais rápida, mais acessível, mais conveniente e mais sustentável do que o que temos hoje. E assim estamos neste novo tipo de jornada de várias décadas, não apenas para trazer de volta as viagens aéreas supersônicas de passageiros, mas para trazê-las de volta de uma forma maior do que nunca e, em última análise, para torná-las o principal meio de transporte para todos os passageiros em longas distâncias – uma coisa muito ousada de se fazer.”

O que foi dito acima é sem dúvida a razão pela qual o Boom Supersonic existe. Não apenas retornar, mas criar igualitarismo para o transporte supersônico.

Scholl também lembrou que a Boom Supersonic está em parceria com a Força Aérea dos EUA para desenvolver transportes supersônicos para que conexões diplomáticas e inserções de forças especiais possam ser feitas para reduzir o risco de turbulência global. Scholl indicou que a Boom Supersonic não tinha interesse em que um produto Boom se tornasse uma plataforma de armas neste momento.

(Imagem: Boom Supersonic)
Com o XB-1 agora um veículo de teste voador, há muitos voos pela frente antes de chegarmos ao primeiro voo do Overture One, e muito menos expandir dramaticamente o acesso ao voo supersônico. Este trabalho exigirá muita engenharia e uma cultura de segurança resiliente. Mas o primeiro voo da primeira etapa foi realizado pela Boom Supersonic hoje, 22 de março de 2024.

Com informações de Simple Flying

domingo, 24 de março de 2024

Após a histórica decolagem do XB-1, Boom Supersonic explica o que acontece durante o 1º voo de uma aeronave


Como visto na sexta-feira, a aeronave de demonstração supersônica da fabricante norte-americana Boom Supersonic, denominada XB-1, decolou pela primeira vez nesta semana para um voo inaugural bem-sucedido no Mojave Air & Space Port, em Mojave, Califórnia.

Como o primeiro jato supersônico desenvolvido de forma independente, o XB-1 é uma fuselagem inteiramente nova, projetada como um demonstrador de tecnologia precursor do projeto e desenvolvimento do Overture, o avião supersônico da Boom. A fim de testar e validar novas tecnologias e designs, o XB-1 passou por extensos testes de solo e agora progrediu para testes de voo.

O primeiro voo (“maiden flight”) de qualquer aeronave abrange uma infinidade de novidades naquele momento singular: a primeira vez que as rodas saem do solo, a primeira vez que o piloto utiliza sistemas no ar, a primeira vez que a aeronave passa pelos procedimentos de pouso.


Um avião projetado para quebrar recordes de velocidade ou altitude, como muitos daqueles que quebraram barreiras no mesmo espaço aéreo em Mojave, passa por várias fases de testes preliminares antes de ultrapassar os limites do que pode fazer. O envelope de voo, ou seja, os limites operacionais da aeronave em relação à velocidade, altitude e outros parâmetros, expande-se gradativamente ao longo de uma série de voos de teste.

Diante disso, a Boom compartilha o seguinte sobre o que acontece quando uma aeronave totalmente nova decola pela primeira vez.

O que acontece durante um voo inaugural?


Cada novo avião, seja comercial ou militar, deve passar por extensos testes de solo e de voo para garantir que atenda a todos os requisitos operacionais e de segurança.

Após testes de solo, como funcionamento do motor e testes abrangentes de cada sistema de bordo, a aeronave passa por testes de taxiamento em velocidades cada vez maiores. Os testes de taxiamento permitem que a equipe teste sistemas em movimento e avalie o desempenho e o manuseio que podem se traduzir em decolagem, pouso e manobras em solo seguras.

Após uma série de testes bem-sucedidos em alta velocidade e verificações pré-voo, e garantindo a devida autorização da autoridade de aviação civil, a aeronave está pronta para iniciar os testes de voo.

O primeiro voo de um avião pode variar amplamente em velocidade, altitude e duração. O primeiro voo histórico em uma aeronave motorizada dos irmãos Wright em 1903 durou apenas 12 segundos, percorreu 36 metros e atingiu uma velocidade máxima de 11 km/h. A altitude mais alta em várias tentativas de voo naquele dia foi de 3 metros.

Avançando ao longo de mais de 100 anos de desenvolvimento aeroespacial até o F-35, um caça a jato capaz de atingir velocidades de até Mach 1,6 (ou 1960 km/h), este atingiu o máximo de 225 nós (ou 416 km/h) durante seu primeiro voo em 2006. O jato executivo Gulfstream G650, conhecido hoje por sua alta velocidade e alcance, voou a 6.600 pés (2.000 metros) a uma velocidade de 170 nós (ou 314 km/h) durante seu primeiro voo de 12 minutos em 2009.

Normalmente, durante o voo inaugural de uma aeronave, o foco principal é a segurança e a minimização de riscos. O envelope de voo se expande gradualmente ao longo de uma série de voos de teste à medida que os dados de desempenho são recebidos e analisados.

Também é padrão da indústria que o trem de pouso permaneça na posição abaixada durante o primeiro voo. Os primeiros voos do F-35 e do G650 ocorreram com o trem de pouso abaixado.

Existem algumas razões para isso, sendo a primeira delas que o objetivo principal do primeiro voo é avaliar outros aspectos do desempenho da aeronave durante a decolagem e o pouso. Caso a aeronave necessite realizar um pouso de emergência, é preferível manter o trem de pouso abaixado e testar esse sistema em voos de teste subsequentes.

Voo inaugural do XB-1


O piloto de testes chefe Bill “Doc” Shoemaker estava nos controles quando o XB-1 decolou, e o piloto de testes Tristan “Geppetto” Brandenburg seguiu e monitorou o XB-1 em um avião de perseguição T-38. O XB-1 atingiu uma altitude máxima de 7.120 pés (2.170 metros) e velocidade de 238 nós (440 km/h) durante o voo de 12 minutos.


Enquanto os pilotos estavam nas aeronaves, a equipe de solo, liderada pelo vice-presidente do programa XB-1, Jeff Mabry, estava na sala de controle, observando de perto muitos aspectos da missão. Os engenheiros da sala de controle são os mesmos que projetaram os sistemas da aeronave e têm operado em equipe em todos os eventos de teste em solo realizados nos últimos dois anos.

Assim que a aeronave decolou, a equipe se concentrou em como o XB-1 voou e pousou, incluindo uma avaliação inicial das qualidades de manuseio da aeronave, verificações de velocidade no ar com a aeronave perseguidora e avaliação da estabilidade da aeronave na atitude de pouso (em um ângulo elevado de ataque).

O XB-1 pousou com segurança graças à coordenação entre o piloto, usando o sistema de visão de realidade aumentada do XB-1, e um LSO (Landing Signal Officer, ou Oficial de Sinalização de Pouso), que observa da lateral da pista e comunica informações adicionais ao piloto para apoiar a aproximação final do avião até o pouso.

O sistema de visão de realidade aumentada do XB-1 é composto por duas câmeras montadas no nariz que alimentam um display do piloto de alta resolução, aumentado digitalmente com indicações de atitude e trajetória de voo. Este sistema permite excelente visibilidade da pista e maior eficiência aerodinâmica sem o peso e a complexidade de um nariz móvel, como tinha, por exemplo, o Concorde.

O XB-1 atendeu a todos os seus objetivos de teste.

O retorno da viagem supersônica


O voo inaugural do XB-1 é um marco importante no caminho para o retorno das viagens supersônicas. O programa XB-1 estabeleceu as bases para o design e desenvolvimento do Overture, o avião supersônico comercial da Boom.

O Overture transportará de 64 a 80 passageiros a Mach 1,7, cerca de duas vezes a velocidade dos aviões subsônicos atuais. Otimizado para velocidade, segurança e sustentabilidade, o Overture foi projetado para funcionar com até 100% de combustível de aviação sustentável (SAF).

Via Murilo Basseto (Aeroin) com informações da Boom Supersonic

sábado, 23 de março de 2024

Os caças modernos são à prova de balas?

Existem apenas alguns jatos militares que possuem alguma blindagem.

Dois F-15E Strike Eagles da Força Aérea dos EUA, designados para a 4ª Ala de Caça, taxiam na
linha de voo na Base da Força Espacial de Vandenberg, na Califórnia (Foto: Força Aérea dos EUA)
Ao contrário dos super-heróis americanos dos quadrinhos, como o Super-Homem, com seu corpo à prova de balas, os caças modernos não são à prova de balas. Os jatos de combate não são blindados porque o metal necessário para proteger a aeronave tornaria a aeronave muito pesada e reduziria o desempenho aerodinâmico. 

No entanto, aeronaves subsônicas específicas de ataque ao solo de apoio próximo, como o Fairchild Republic A-10 Thunderbolt II (Warthog) e o russo Sukhoi Su-25, codinome da OTAN Frogfoot, têm alguns recursos para proteger o piloto de fogo terrestre de armas pequenas.

A-10 'Warthog' da Força Aérea dos EUA (Foto: Força Aérea dos EUA)
A cabine do A-10 é protegida por uma concha de titânio de 1.200 libras chamada “banheira”. Durante os testes, a banheira resistiu a impactos diretos de tiros de canhão de 23 mm e impactos indiretos de fragmentos de projéteis de 57 mm. A Rússia também instalou uma carcaça de titânio soldada em forma de banheira no Sukhoi Su-25 devido ao seu papel como uma aeronave de voo lento e apoio próximo, suscetível a fogo terrestre.

Um Sukhoi Su-25 (Foto: Fedor Leukhin/Wikimedia Commons)

Velocidade e manobrabilidade eram mais importantes que a armadura


Nos primeiros dias da guerra aérea, os fabricantes de aeronaves militares estavam mais interessados ​​em tornar as suas aeronaves mais rápidas e manobráveis. No entanto, à medida que a tecnologia avançava, começaram a procurar formas de proteger partes da aeronave que seriam suscetíveis a tiros de bala. Na Segunda Guerra Mundial, mais atenção estava sendo dada à proteção dos pilotos contra tiros e estilhaços de explosões de projéteis antiaéreos.

ME-109 Buchon (Foto: Airwolfhound/Wikimedia Commons)
À medida que a guerra avançava, a Luftwaffe alemã começou a modernizar seus caças Messerschmitt Bf 109 com placas de aço atrás da cabeça do piloto e na antepara traseira da cabine. Eles também aumentaram a espessura do painel de vidro frontal da cabine, assumindo que a aeronave tinha maior probabilidade de ser atingida pela frente ou por trás em combate.

Mísseis terra-ar foram desenvolvidos


Perto do final da guerra, à medida que as aeronaves se tornavam mais rápidas e voavam mais alto, tentar derrubá-las com projéteis antiaéreos era inútil. Durante a guerra, a principal arma terra-ar da Alemanha foi o canhão de artilharia antiaérea e antitanque de 88 mm. Se um Boeing B-17 Flying Fortress se perdesse ao alcance da arma, os alemães calcularam que mais de 2.800 tiros seriam necessários para derrubar um único avião.

O B-17 chamado 'Sentimental Journey' em voo (Foto: irwolfhound/Wikimedia Commons)
Quando o B-29 pressurizado entrou no conflito, ele pôde voar em altitudes mais elevadas, tornando obsoletos os canhões antiaéreos alemães. A solução óbvia era desenvolver um míssil terra-ar que pudesse ser usado para derrubar aeronaves. Preocupado com a possibilidade de Moscou ser submetida a bombardeios como os realizados pelos Aliados nas cidades alemãs, Josef Stalin ordenou que seus engenheiros desenvolvessem tal arma. O primeiro destes novos mísseis foi o sistema S-25 Berkut, que entrou em serviço na primavera de 1955.

Um B-29 Superfortress da Segunda Guerra Mundial, apelidado de 'Fifi' (Foto: BlueBarron)

Mísseis ar-ar vieram em seguida


Agora, com mísseis terra-ar disponíveis, o próximo passo era desenvolver um míssil ar-ar que pudesse ser lançado a partir de uma aeronave. A primeira vez que um míssil ar-ar foi usado foi em setembro de 1958, quando um F-86 Sabres taiwanês usou mísseis americanos AIM-9B Sidewinder em alguns combates contra o MiG-17 da República Popular da China.

F-86 Sabre de Taiwan (Foto: Rob Schleiffert/Flickr)
À medida que a tecnologia avançava e novas formas de travar um míssil terra-ar em seu alvo surgiam, a ideia de colocar qualquer blindagem em uma aeronave parecia inútil, e isso, combinado com o peso adicional, é a principal razão pela qual isso não é feito.

Com informações de Simple Flying

quarta-feira, 20 de março de 2024

Quão longe você pode voar em um jato jumbo movido a bateria?

A resposta explica por que os carros elétricos estão por toda parte, mas as aeronaves elétricas ainda são uma novidade.


A melhor coisa sobre os carros elétricos é que eles não queimam combustíveis fósseis, adicionando dióxido de carbono à atmosfera e contribuindo para as mudanças climáticas. Não podemos continuar queimando essas coisas para sempre .

Mas enquanto os carros elétricos são cada vez mais comuns, as aeronaves elétricas estão apenas começando a decolar . Claro, existem drones com motores elétricos, veículos do tipo quadricóptero grandes o suficiente para transportar uma pessoa e até algumas aeronaves comerciais elétricas (a Air Canada encomendou recentemente 30 desses aviões da Heart Aerospace).

Ainda assim, existem alguns desafios significativos no uso de baterias para voar, e é por isso que você provavelmente nunca fez uma viagem em um avião elétrico. Aqui estão alguns dos problemas de física com os quais os engenheiros de aviação terão que lidar primeiro.

Física do Voo


Os objetos na Terra permanecem no solo devido à sua interação gravitacional com o planeta, o que cria uma força descendente. Para sair do chão e permanecer no ar, um avião precisa de uma força de empuxo para cima que seja igual em magnitude à força gravitacional. Para aeronaves, essa força é chamada de sustentação e se deve à interação entre as asas do avião e o ar.

Como exatamente uma asa fornece sustentação? Uma asa é uma superfície angular que se move através do ar, composta de pequenas moléculas que são essencialmente estacionárias. Imagine essas moléculas como sendo como neve, e a asa como um arado que as empurra, desviando-as para baixo, mas também ligeiramente para a frente. Se a asa empurra o ar, então o ar deve empurrar a asa para trás na direção oposta – o que neste caso significa principalmente para cima. Esta é a força de sustentação.


Na verdade, como a força do ar empurra principalmente para cima, mas também empurra ligeiramente para trás, na direção oposta ao movimento da asa, frequentemente dividimos essa interação em duas forças. A força que empurra para cima é chamada de sustentação, e a força para trás é o arrasto. Observe que essas duas forças estão conectadas. Você não pode ter sustentação sem arrasto, porque eles são da mesma interação.

Você pode alterar a magnitude da força de sustentação em uma asa. Se o avião estiver viajando mais rápido, ele colidirá com mais ar e produzirá uma sustentação maior – mas também um arrasto maior. Se você deseja que a aeronave voe em um caminho nivelado, sua sustentação deve ser igual ao seu peso. Quando um avião diminui sua velocidade abaixo de um determinado valor (que depende das características desse avião em particular), ele começará a cair.

A força de sustentação também depende da área das asas. Asas maiores colidem com mais ar para produzir maior sustentação. Por fim, a sustentação também depende do ângulo que a asa se move no ar, que é chamado de “ângulo de ataque”.

Com todos esses parâmetros, às vezes é mais fácil caracterizar uma aeronave em particular com um valor chamado “taxa de planeio”. Imagine um avião sem impulso para a frente, que é o que aconteceria se os motores fossem desligados. Agora, a força de arrasto que empurra para trás fará com que a velocidade do avião diminua. No entanto, se a aeronave se mover para baixo (para uma altitude menor) enquanto continua a voar para frente, ela pode usar a força gravitacional para continuar se movendo a uma velocidade constante, mas não manterá um vôo nivelado. Essa proporção de quanto ele se move horizontalmente em comparação com o quanto ele cai verticalmente é a taxa de planeio (como essa proporção realmente depende da conexão entre sustentação e arrasto, ela é igual ao valor da força de sustentação dividida pela força de arrasto, geralmente chamada de relação L/D).

Um avião típico terá uma taxa de planeio de cerca de 15 para 1 (ou apenas 15), o que significa que ele avançará 15 metros e cairá 1 metro durante o voo sem motor. Um planador sem motor pode ter uma proporção de mais de 40 para 1.

Força para voar


Se você deseja que uma aeronave viaje a uma velocidade constante em vôo nivelado, precisará de algum tipo de empuxo. Tem que haver alguma força empurrando o avião para frente para equilibrar a força de arrasto que empurra para trás. Tanto os jatos quanto os veículos movidos a hélice fazem isso essencialmente pegando o ar e jogando-o para trás, através de um motor ou passando por uma hélice, para fornecer uma força de avanço.

Aumentar a velocidade do ar requer energia. Aeronaves convencionais obtêm essa energia por meio da combustão de combustível de aviação - mas poderia ser facilmente proveniente de uma bateria elétrica ou de qualquer outra fonte de energia. O importante é que não pode fazer isso apenas uma vez; ele tem que continuamente empurrar o ar para fornecer impulso. Se parar, a aeronave passará de voo motorizado para voo planado e provavelmente voltará ao solo muito cedo.

Vamos pensar na potência necessária para voar a uma velocidade constante. Definimos potência como a taxa de variação da energia. Digamos que você pilote este avião por 100 segundos (esse é o nosso Δt ) e use uma energia total de 200 joules ( ΔE ). Então a potência seria ΔE / Δt = 2 joules por segundo. Isso é o mesmo que 2 watts.


Como estimamos a potência necessária para pilotar um avião? Um método seria apenas pilotá-lo e, em seguida, verificar quanto combustível foi consumido. Mas eu quero uma maneira de aproximar esse valor sem realmente entrar em uma aeronave, então aqui está uma maneira de fazer isso usando a razão de planeio. Imagine que tenho um avião sem energia planando em algum ângulo. Depois que ele cai 1 metro, eu o levanto de volta à sua altura original. Levantar um avião a uma altura h requer uma energia de m × g × h , onde m é a massa do avião e g é o campo gravitacional. (Na Terra, isso tem um valor de 9,8 newtons por quilograma.) Aqui está um diagrama de como isso se parece:


Tenho a energia necessária para erguer o avião, mas para calcular a potência também preciso do tempo que leva para que esse movimento aconteça. Se a aeronave estiver viajando com uma velocidade v , ela percorrerá uma certa distância s , e exigirá um intervalo de tempo entre as elevações de Δt = s / v . Juntando tudo isso, obtenho a seguinte expressão para o poder:

Essa expressão tem a razão de h/s , que é exatamente o inverso da razão de planeio. Vamos chamar a taxa de planeio de G . Isso significa que a potência para pilotar a aeronave será:


Se a massa estiver em quilogramas e a velocidade em metros por segundo, a potência estará em watts.

Só por diversão, vamos tentar isso para um Boeing 747. Há várias variantes do 747, então vou apenas escolher alguns valores. Vamos com um peso de 800.000 libras e uma velocidade de cruzeiro de 800 quilômetros por hora (precisarei fazer algumas conversões de unidade para esses valores). Finalmente, irei com uma razão de planeio de 15 , o que parece razoável. Com isso, obtenho um requisito de potência de cruzeiro de 5,26 x 10 7 watts, ou cerca de 70.000 cavalos de potência. Isso é muito, mas lembre-se que este é um jato gigante.

Que tal uma aeronave menor como um Cessna 172? Tem uma massa de 1.111 kg com uma velocidade de cruzeiro de 226 km/h. Isso colocou sua potência em 45.600 watts, ou apenas 61 cavalos de potência. Obviamente, um avião pequeno não deveria exigir tanta potência quanto um avião grande, então isso faz sentido.

Energia e Massa Armazenadas


Por que os aviões usam combustíveis fósseis em vez de bateria para voar? A razão é que você pode obter muita energia queimando gasolina de aviação (para aeronaves a hélice) ou combustível de aviação (para jatos - obviamente).

A ideia-chave aqui é o que chamamos de “densidade de energia”. Na verdade, existem duas versões de densidade de energia. Existe a energia armazenada por unidade de volume (em joules por litro) ou a energia armazenada por unidade de massa (em joules por quilograma), que costuma ser chamada de energia específica .

Vamos voltar ao exemplo do 747. A maioria das variantes deste avião tem uma capacidade de combustível em torno de 200.000 litros, o que é realmente muito combustível. Com uma densidade de cerca de 0,8 quilograma por litro, isso lhe dá uma massa de combustível de 160.000 quilos. A energia específica do combustível de aviação é de cerca de 12.600 watts-hora por quilo. Isso significa que, com 1 quilo de combustível, você pode obter uma potência de 12.600 watts por uma hora – supondo que você possa usar toda a energia, o que não pode.

Digamos que a eficiência geral do avião seja de 35% (o que é o mesmo que dizer que cada motor a jato é 35% eficiente). Isso significa que 1 quilo de combustível fornecerá apenas 4.410 watts por uma hora. Mas você vê onde isso vai dar, certo? Eu sei a quantidade de combustível no 747 e a potência necessária. Com isso, posso calcular o tempo de voo (e também a distância de voo). Acionar os números me dá um tempo de voo de 13,5 horas e uma distância de cerca de 10.000 quilômetros, ou 6.200 milhas. Isso é apenas um cálculo aproximado, mas parece legítimo.

Agora suponha que eu pegue todo aquele combustível de aviação e o substitua por baterias. Suponha que eu possa substituir os motores a jato por motores turbofan elétricos equivalentes ou algo assim. Então, é uma bateria de 160.000 quilos. Os carros elétricos usam uma bateria de íons de lítio, e a melhor energia específica que você pode obter é de cerca de 250 watts-hora por quilo. Agora você já pode ver o problema. Se eu assumir que um motor elétrico é 50% eficiente, nosso 747 movido a eletricidade poderia voar por 22,7 minutos com um alcance de 304 quilômetros. Esqueça aquela viagem ao Havaí.

Na verdade, é ainda pior do que isso. Ignorei a energia extra necessária para levar a aeronave à altitude de cruzeiro em sua velocidade de cruzeiro. Nem chegaria tão longe.

Ajudaria ter uma aeronave menor como o Cessna 172? Claro, ele consome menos energia, mas também carrega menos combustível – cerca de 170 quilos. Se substituirmos esse combustível por uma bateria de íons de lítio, ela poderá voar por cerca de 30 minutos. Isso ainda não é ótimo. Se você reduzir a velocidade de 220 km/h para 150 km/h, poderá obter um tempo de voo de cerca de 42 minutos, mas não conseguirá realmente obter uma distância melhor, pois estará voando mais devagar.

Então, talvez as baterias de íons de lítio não sejam a melhor opção. E algumas outras fontes de energia? Vamos apenas tentar algumas coisas para nos divertir.

Que tal um avião movido a energia nuclear? Se você pegar o urânio-235 e dividi-lo em partes (como em um reator), poderá obter 79 milhões de megajoules por quilograma. Isso é 7,9 x 10 13 joules para um quilograma de combustível. Ainda assim, você não pode simplesmente jogar um pouco de urânio em um avião e esperar obter energia. Um reator nuclear não contém apenas combustível, ele tem todos os tipos de outras coisas para transformar a reação nuclear em energia. A coisa mais importante que você precisa é de uma blindagem pesada para proteger os humanos a bordo da radiação . Isso adiciona muito mais massa. Mas ainda assim, é possível. Apenas 1 quilo de combustível seria suficiente para um 747 voar por mais de 200 horas.

Se os aviões nucleares parecem muito com uma ideia da Guerra Fria (porque eram), que tal algo mais razoável, como uma aeronave movida a elástico? Eles seriam como aqueles aviões de brinquedo que você costumava construir com a hélice de corda, só que maiores e com mais elásticos. Acontece que eu medi anteriormente a energia específica para um elástico torcido. Descobri que com apenas um quilo de elásticos você pode armazenar 6.605 joules, para uma energia específica de 6.605 joules/kg. Se você retirar o combustível de um 747 e substituí-lo por 160.000 kg de elásticos, obterá um tempo de voo de 10 segundos. Isso seria divertido, mas você não teria tempo para assistir a um filme ou mesmo para sua bebida grátis. Pelo menos você poderia dizer que voou em um avião de elástico.

E se o avião fosse movido por ter os passageiros andando em um monte de bicicletas ergométricas? Um 747 pode facilmente transportar 500 passageiros, e um humano pode produzir uma potência de 75 watts por um período de oito horas (ou um dia de trabalho). Mas isso dá apenas uma potência total de 37.500 watts. Isso é apenas 0,07% da potência necessária para voar em velocidade de cruzeiro. Então isso também não vai funcionar.

Ainda assim, é uma espécie de alívio. A única coisa pior do que abastecer aviões com combustíveis fósseis pode ser abastecê-los com pessoas.